Abstract:
A display device includes a display panel having flexibility, a storage connected to a first end of the display panel and accommodating the display panel so that the display panel is inserted and withdrawn, an extension part connected to a second end of the display panel, which is opposite to the first end of the display panel, and facing one side of the storage in a first direction, and a display driving integrated circuit which receives image data and a control signal from a host and provides a data signal to the display panel. The display driving integrated circuit includes a data processor which receives a smart size change signal from the host and sets a non-active area of the display panel based on the smart size change signal.
Abstract:
A liquid crystal display device includes a substrate; a gate electrode on the substrate; a semiconductor pattern layer on the gate electrode; and source and drain electrodes on the semiconductor pattern layer and spaced apart from each other. The source electrode includes: a first facing portion facing the drain electrode; and a first protrusion protruding toward the drain electrode from the first protrusion. The drain electrode includes: a second facing portion facing the source electrode; and a second protrusion protruding toward the source electrode from the second facing portion and facing the first protrusion. The semiconductor pattern layer includes: a source area overlapping the source electrode; a drain area overlapping the drain electrode; and a bridge area connecting the source area with the drain area, and a space defined between the first protrusion and the second protrusion is on the bridge area.
Abstract:
A touch panel with improved optical characteristics, thin-film characteristics, durability, and reliability is presented. The touch panel includes: a plurality of first sensing electrodes located on a surface of the substrate and arranged along a first direction and a plurality of second sensing electrodes arranged along a second direction intersecting the first direction; a first connector connecting the first sensing electrodes along the first direction; an insulating layer pattern which is disposed on the first connector; and a second connector which is disposed on the insulating layer pattern, intersects the first connector to be insulated from the first connector, and connects the second sensing electrodes along the second direction, wherein at least one of the first sensing electrodes includes: a first metal conductive pattern disposed on the surface of the substrate and includes a plurality of first fine metal lines; and a first transparent conductive pattern which is disposed on the first metal conductive pattern, wherein the first transparent conductive pattern includes a first portion that overlaps the first connector.
Abstract:
Provided are a liquid crystal display (LCD) comprising: a first substrate; a second substrate which faces the first substrate; a liquid crystal layer which is disposed between the first substrate and the second substrate; a wire grid polarizer (WGP) which is disposed on the first substrate; a WGP insulating layer which is disposed on the WGP and covers the WGP; and a pad electrode which is disposed on the first substrate, wherein the first substrate comprises a non-overlap area protruding from the second substrate, a sidewall of the WGP insulating layer is located in the non-overlap area, and the pad electrode extends from the non-overlap area of the first substrate along the sidewall of the WGP insulating laver.
Abstract:
Provided are light source module and backlight unit. A wire grid polarizer including a substrate, and a plurality of conductive wire patterns configured to be formed parallel to one another on the substrate, wherein each of the conductive wire patterns includes a first conductive wire pattern, an insulating layer and a second conductive wire pattern and the first and second conductive wire patterns are electrically insulated from each other and have different shapes.
Abstract:
According to an embodiment, there is provided a wire grid polarizer comprising a substrate, a plurality of parallel conductive wire patterns which is located to protrude on the substrate, and an oxidation prevention layer which is located along an upper surface of the conductive wire patterns, wherein the oxidation prevention layer is formed of a compound including aluminum and fluorine.
Abstract:
A display device includes a display panel including a first display area and a second display area, and a metal layer disposed on a rear side of the display panel. The metal layer includes a light transmitting region disposed corresponding to the second display area. The light transmitting region includes a fine pattern.
Abstract:
Provided are light source module and backlight unit. A wire grid polarizer including a substrate, and a plurality of conductive wire patterns configured to be formed parallel to one another on the substrate, wherein each of the conductive wire patterns includes a first conductive wire pattern, an insulating layer and a second conductive wire pattern and the first and second conductive wire patterns are electrically insulated from each other and have different shapes.
Abstract:
Provided is a manufacturing method of a thin film transistor array panel including: formation of a gate line including a gate electrode on a substrate; formation of sequentially a gate insulating layer, an active layer, a data metal layer, and a photoresist etching mask pattern on the gate line; etching the data metal layer with the same shape as the photoresist etching mask pattern; etching the active layer by using the photoresist etching mask pattern; formation of a data line including a source electrode and a drain electrode for completing a channel region on the active layer; and formation of a pixel electrode exposing the drain electrode and electrically connected with the drain electrode, in which in the etching of the active layer, a dry-etch process is performed by using gas including at least one of NF3 and H2.
Abstract:
Disclosed is a touch sensor device, including: a plurality of first sensing electrodes which includes a plurality of first linear electrodes extending in a first direction and a first connection electrode connecting the plurality of first linear electrodes to each other; and a plurality of second sensing electrodes which includes a plurality of second linear electrodes extending in a second direction perpendicular to the first direction and a second connection electrode connecting the plurality of second linear electrodes to each other, in which a disposition density of the plurality of first linear electrodes included in one first sensing electrode is gradually decreased from a center of the first sensing electrode to an outer side of the first sensing electrode.