Abstract:
A thin film transistor array panel includes a gate line elongated in an extension direction and including a gate and dummy gate electrode extended therefrom; and a source electrode, and a single drain member including a drain electrode at a first end thereof and a dummy drain electrode at an opposing second end thereof. The drain electrode faces the source electrode with respect to the gate electrode, and the dummy drain electrode overlaps the dummy gate electrode. The drain and dummy drain electrode respectively include a plurality of first and second regions each having a predetermined width in the extension direction. A second region includes an edge which forms an angle from about 0 degrees to about 90 degrees with the extension direction, and a planar area of at least one of the plurality of second regions is different from that of remaining second regions.
Abstract:
A gate drive circuit in which multiple stages are connected together one after each other. An n-th stage includes a pull-up part, a carry part, a pull-down part, a switching part, a first maintaining part and a second maintaining part. The pull-up part outputs a high voltage of a first clock signal. The carry part outputs a high voltage of the first clock signal. The pull-down part pulls-down the n-th gate signal into a first low voltage. The switching part outputs a first signal synchronized with the first clock signal during an interval other than a high voltage output interval of the n-th carry signal. The first maintaining part maintains the n-th gate signal at the first low voltage in response to the first signal. The second maintaining part maintains the n-th gate signal at the first low voltage in response to a second signal.
Abstract:
A gate driver includes a plurality of stages, wherein an n-th stage includes: a pull-up unit configured to output a high voltage of a clock signal as a high voltage of an n-th gate signal; a pull-down unit configured to decrease the high voltage of the n-th gate signal to a first low voltage; a discharging unit configured to discharge a voltage of the first node to a second low voltage lower than the first low voltage; a carry unit configured to output the high voltage of the clock signal as an n-th carry signal; an inverter unit configured to output a signal in synchronization with the clock signal; a first node storage unit configured to maintain the voltage of the first node at the second low voltage; and a second node storage unit configured to maintain the voltage of the second node at the first or second low voltage.
Abstract:
A thin film transistor array panel includes a gate line elongated in an extension direction and including a gate and dummy gate electrode extended therefrom; and a source electrode, and a single drain member including a drain electrode at a first end thereof and a dummy drain electrode at an opposing second end thereof. The drain electrode faces the source electrode with respect to the gate electrode, and the dummy drain electrode overlaps the dummy gate electrode. The drain and dummy drain electrode respectively include a plurality of first and second regions each having a predetermined width in the extension direction. A second region includes an edge which forms an angle from about 0 degrees to about 90 degrees with the extension direction, and a planar area of at least one of the plurality of second regions is different from that of remaining second regions.
Abstract:
A gate driving circuit includes driving stages. Each of the driving stages applies each of gate signals to each of gate lines of a display panel. A k-th (k is a natural number equal to or greater than 2) driving stage includes a first output transistor, a capacitor, and first and second control transistor. The first output transistor includes a control electrode connected to a first node, an input electrode receiving a clock signal, and an output electrode outputting a k-th gate signal. The capacitor is connected between the output electrode of the first output transistor and the control electrode of the first output transistor. The first control transistor applies a first control signal to a second node to control a voltage of the first node before the k-th gate signal is output. The second control transistor is diode-connected between the second node and the first node.
Abstract:
A gate driving circuit includes driving stages. Each of the driving stages applies each of gate signals to each of gate lines of a display panel. A k-th (k is a natural number equal to or greater than 2) driving stage includes a first output transistor, a capacitor, and first and second control transistor. The first output transistor includes a control electrode connected to a first node, an input electrode receiving a clock signal, and an output electrode outputting a k-th gate signal. The capacitor is connected between the output electrode of the first output transistor and the control electrode of the first output transistor. The first control transistor applies a first control signal to a second node to control a voltage of the first node before the k-th gate signal is output. The second control transistor is diode-connected between the second node and the first node.
Abstract:
A display device includes: a plurality of pixels; a plurality of gate lines connected to the plurality of pixels; an output terminal connected to a gate line of the gate lines; a first transistor connected to a first node, a first clock signal input terminal and the output terminal; a second transistor connected to a second clock signal input terminal, a low-level power voltage and the output terminal; a third transistor connected to a second node, the low-level power voltage and the first node; a fourth transistor connected to a first forward input terminal, the low-level power voltage and the second node; and a fifth transistor connected to a first backward input terminal, the low-level power voltage and the second node.
Abstract:
A gate driver includes a plurality of stages, wherein an n-th stage includes: a pull-up unit configured to output a high voltage of a clock signal as a high voltage of an n-th gate signal; a pull-down unit configured to decrease the high voltage of the n-th gate signal to a first low voltage; a discharging unit configured to discharge a voltage of the first node to a second low voltage lower than the first low voltage; a carry unit configured to output the high voltage of the clock signal as an n-th carry signal; an inverter unit configured to output a signal in synchronization with the clock signal; a first node storage unit configured to maintain the voltage of the first node at the second low voltage; and a second node storage unit configured to maintain the voltage of the second node at the first or second low voltage.