Abstract:
A display apparatus includes a display panel, a gate driver, a counter and a power generator. The display panel includes a gate line and a pixel electrically connected to the gate line. The gate driver is configured to set a voltage level and an output timing of a gate signal applied to the gate line based on a gate driving voltage and a first control signal. The gate driving voltage includes a gate on voltage and a gate off voltage. The counter is configured to increase a count value based on the first control signal. The power generator is configured to adjust a level of the gate driving voltage based on the count value.
Abstract:
In a display panel and a display apparatus having the display panel, the display panel includes array and opposite substrates. The array substrate includes display and peripheral areas. Gate and source lines are formed in the display area. A gate driving part and first and second clock lines are formed in the peripheral area. The gate driving part outputs gate signals to the gate line. The first and second clock lines respectively transmit first and second clock signals to the gate driving part. The opposite substrate is combined with the array substrate and includes a common electrode layer. The common electrode layer has an opening portion patterned to expose the first and second clock lines. The exposed portions of the first and second clock lines have substantially the same area. Thus, delays of the gate signals may be minimized and distortion of the gate signals may be prevented.
Abstract:
A method of driving a display panel includes charging a pixel with first data during a first charging period, comparing a first grayscale of the first data and a second grayscale of second data, charging the pixel with compensated data during a second charging period if the first grayscale is greater than the second grayscale, and charging the pixel with the second data during a third charging period.
Abstract:
The present invention provides a display device which can display a clear stereoscopic image by distinctly separating a left image from a right image, and a method of driving the display device. The display device includes a display panel that sequentially displays a left image and a right image, and a polarizing panel disposed on the display panel, the polarizing panel to change a polarization direction of at least one of the left image and the right image so that polarization directions of the left image and the right image are different from each other. Each left image and a right image includes a black image.