Abstract:
A touch sensor includes first touch cells disposed in a first touch sensing area, the first touch cells each including a first touch pattern and a first dummy pattern, and second touch cells disposed in a second touch sensing area, the second touch cells each including a second touch pattern and a second dummy pattern. An area of a first dummy pattern area in which the first dummy pattern is disposed is greater than an area of a second dummy pattern area in which the second dummy pattern is disposed.
Abstract:
A touch sensor includes first touch cells disposed in a first touch sensing area, the first touch cells each including a first touch pattern and a first dummy pattern, and second touch cells disposed in a second touch sensing area, the second touch cells each including a second touch pattern and a second dummy pattern. An area of a first dummy pattern area in which the first dummy pattern is disposed is greater than an area of a second dummy pattern area in which the second dummy pattern is disposed.
Abstract:
A display device includes a first display panel, a second display panel disposed adjacent to the first display panel, a first touch array disposed on the first display panel, a second touch array disposed on the second display panel, a first touch driver that applies a first touch driving signal to the first touch array in response to a frame synchronization signal, a second touch driver that applies a second touch driving signal to the second touch array in response to the frame synchronization signal, and a common line commonly connected to the first and second touch drivers to transmit the frame synchronization signal, and pulses included in the first touch driving signal and pulses included in the second touch driving signal have phases opposite to each other.
Abstract:
A display device is provided. The display device includes a base; a gate conductor disposed directly on the base and including a gate line and a gate electrode; a gate insulating layer disposed on the gate conductor and including an overlap portion, which overlaps with the gate conductor, and a non-overlap portion, which is connected to the overlap portion, does not overlap with the gate conductor, and is spaced apart from the base; and a semiconductor pattern disposed on the gate insulating layer and overlapping with the gate electrode, wherein edges of the gate insulating layer project further than edges of the gate conductor and edges of the semiconductor pattern.
Abstract:
A three dimensional (3D) display device and manufacturing method for the same are provided. The 3D display device includes a 3D display module; a back light module disposed behind the 3D display module; and a main frame. The back light module is installed inside of a rear side of the main frame, and the 3D display module is installed inside of a front side of the main frame.
Abstract:
A touch detection module includes driving electrodes extending parallel to each other, sensing electrodes crossing the driving electrodes, and a touch driver circuit for supplying touch driving signals to the driving electrodes and for detecting touch sensing signals through the sensing electrodes to determine touch position coordinates. The touch driver circuit selects between a group driving scheme and a sequential driving scheme for at least one frame. According to the group driving scheme, the touch driver circuit sorts the driving electrodes into groups, simultaneously drives driving electrodes in a same group among the groups, and drives the groups at different times. According to the sequential driving scheme, the touch driving circuit sequentially drives the driving electrodes.
Abstract:
A design for a scan driver and a display device including the scan driver that is more resilient to electrostatic discharge. Thin film transistors within a stage are designed differently depending on whether or not a gate of the transistor is connected to an external source. Transistors whose gate is connected to an external source is specially designed to withstand electrostatic discharge applied to the gate thereof by one or more of increasing a number of channel areas, decreasing a length of an ohmic bridge, including a resistive element to the gate, decreasing a width of a channel areas, and increasing a width of the active layer.
Abstract:
A transistor substrate may include a base substrate, a data line, a conductive layer, a semiconductor layer, a gate electrode, and a pixel electrode. The data line may directly contact the base substrate. The conductive layer may directly contact the base substrate and may be spaced from the data line. The semiconductor layer may overlap the conductive layer, may be spaced from the conductive layer, and may include a source electrode and a drain electrode. The source electrode may be electrically connected to the data line. The gate electrode may overlap the semiconductor layer. The pixel electrode may be electrically connected to the drain electrode.
Abstract:
A display device including: a first substrate including a first base substrate and a lower pad disposed on one end of the first base substrate on a side; a second substrate disposed above the first substrate and including a second base substrate and an upper pad disposed on an end of the second base substrate on the side; a side pad electrically connected to the lower pad and the upper pad; and a sealing member disposed between the first substrate and the second substrate. The sealing member includes an insulating resin and conductive balls dispersed in the insulating resin, and the upper pad and the lower pad are electrically connected to each other through the conductive balls.
Abstract:
A transistor substrate may include a base substrate, a data line, a conductive layer, a semiconductor layer, a gate electrode, and a pixel electrode. The data line may directly contact the base substrate. The conductive layer may directly contact the base substrate and may be spaced from the data line. The semiconductor layer may overlap the conductive layer, may be spaced from the conductive layer, and may include a source electrode and a drain electrode. The source electrode may be electrically connected to the data line. The gate electrode may overlap the semiconductor layer. The pixel electrode may be electrically connected to the drain electrode.