Abstract:
A stacked semiconductor memory device comprises a semiconductor substrate having a functional circuit, a plurality of memory cell array layers, and at least one connection layer. The memory cell array layers are stacked above the semiconductor substrate. The connection layers are stacked above the semiconductor substrate independent of the memory cell array layers. The connection layers electrically connect memory cell selecting lines arranged on the memory cell array layers to the functional circuit.
Abstract:
A method of operating a volatile memory device includes storing address information of weak cell rows. According to some examples, after writing to a weak cell row, a refresh operation is performed on the weak cell row within a predetermined time. According to some examples, the writing operation to a weak cell row may be performed with a longer write recovery time than a write recovery time to normal cell rows.
Abstract:
A refresh method for a volatile memory device includes refreshing memory cells of a first set of rows of an array at a first refresh rate having a first refresh period, the first refresh rate being a lower rate having a longer refresh period than a second refresh rate having a second refresh period, wherein each memory cell in the first set of rows of the array has a retention time longer than the first refresh period; and refreshing memory cells of a second set of rows of the array at a third refresh rate having a third refresh period, the third refresh rate being a higher rate having a shorter refresh period than the second refresh rate having the second refresh period, wherein at least one memory cell of each row of the second set of rows has a retention time longer than the third refresh period and shorter than the first refresh period. The second refresh period corresponds to a refresh period defined in a standard for the volatile memory device.
Abstract:
A semiconductor memory device having a 3D stacked structure includes: a first semiconductor area with a stacked structure of a first layer having first data and a second layer having second data; a first line for delivering an access signal for accessing the first semiconductor area; and a second line for outputting the first and/or second data from the first semiconductor area, wherein access timings of accessing the first and second layers are controlled so that a first time delay from the delivery of the access signal to the first layer to the output of the first data is substantially identical to a second time delay from the delivery of the access signal to the second layer to the output of the second data, thereby compensating for skew according to an inter-layer timing delay and thus performing a normal operation. Accordingly, the advantage of high-integration according to a stacked structure can be maximized by satisfying data input/output within a predetermined standard.