Abstract:
A storage device including: a bridge board to receive a first command; an authenticator to receive user information; and a memory device to receive the first command from the bridge board, the memory device includes a memory controller which determines a status of the memory device, provides status information including the determined status of the memory device to the bridge board, determines the status of the memory device as an unlocked status or a locked status, the bridge board includes a transceiver which communicates with the host through an interface, a register which stores interface information, and a bridge board controller which generates a first response to the first command in a format corresponding to the interface using the interface information, and provides the first response to a host, the first response includes a status bit which inhibits or allows a write operation with respect to the memory device.
Abstract:
A storage device includes a storage controller, which is configured to receive a command generated by a first virtual machine, from a host, and a non-volatile memory device, which is configured to store first data for the command. The command includes one of a retain command, which is generated to command the storage controller to retain the first data in the non-volatile memory device, or an erase command, which is generated to command the storage controller to erase the first data from the non-volatile memory device, when access between the first virtual machine and the storage controller at least temporarily interrupted.
Abstract:
A storage controller and a storage system comprising the same are provided. Provided is a device security manager configured to set a first device security zone to allow a first tenant to access first tenant data stored in a non-volatile memory, receive access information from a host device and writing the received access information in a mapping table, wherein the access information includes a first host memory address in which the first tenant data is stored in the host device, a first namespace identifier for identifying the first tenant data stored in the non-volatile memory, a first logic block address corresponding to the first namespace identifier, and an encryption key, encrypt the first tenant data by using the encryption key, and write the encrypted first tenant data in the first device security zone of the non-volatile memory.
Abstract:
A storage device includes a non-volatile memory configured to store an encryption key and a data key encrypted with the encryption key, writes data using the data key, and reads the data using the data key; and a storage controller, wherein the storage controller is configured to receive a first security setting command which allows access to the data key, using a first password, generates a first key on the basis of the first password in response to the first security setting command, encrypts the encryption key with the first key to generate a first encrypted encryption key, encrypts the first key with the encryption key to generate an encrypted first key, and stores the first encrypted encryption key and the encrypted first key in the non-volatile memory.
Abstract:
A storage device includes a storage controller, which is configured to receive a command generated by a first virtual machine, from a host, and a non-volatile memory device, which is configured to store first data for the command. The command includes one of a retain command, which is generated to command the storage controller to retain the first data in the non-volatile memory device, or an erase command, which is generated to command the storage controller to erase the first data from the non-volatile memory device, when access between the first virtual machine and the storage controller at least temporarily interrupted.
Abstract:
A security method based on a memory unit for a user is provided. The security method includes receiving, from a server, a security code including a security service command for the user terminal and verification information certifying the security service command; determining whether the received verification information matches verification information stored in the memory unit; and performing, by the memory unit, a security action corresponding to the security service command, when the received verification information matches the stored verification information.
Abstract:
A storage device having improved security reliability includes a non-volatile memory, and a storage controller configured to control an operation of the non-volatile memory, generate a key material, receive a key identification (ID) from a firmware, determine whether a salt value matching the key ID is stored in the non-volatile memory, generate a private key using the salt value stored in the non-volatile memory and the key material in response to determining that the salt value matching the key ID is stored in the non-volatile memory, and, in response to determining that the sale value matching the key ID is not stored in the non-volatile memory, receive a salt value from the firmware and generate the private key using the salt value from the firmware and the key material, and store the salt value used for generating the private key in the non-volatile memory.
Abstract:
A boot Read-Only Memory (ROM) update method and a boot-up method of an embedded system are provided. The boot Read-Only Memory (ROM) update method of an embedded system including a memory and a ROM. The memory includes a user data area and a boot ROM area that includes a first area and a second area. The ROM copies a first boot code from the boot ROM area during boot-up. The boot ROM update method includes writing a second boot code to the second area in response to a first ROM update command. The second boot code includes a second boot ROM image and a second signature for the second boot ROM image. The method also includes verifying validity of the second signature and, if the second signature is valid, swapping the first area and the second area. The first boot code is disposed in the first area and includes a first boot ROM image and a first signature for the first boot ROM image.
Abstract:
A storage device, a method of operating the storage device, and a method of operating a host device are provided. The storage device includes a nonvolatile memory (NVM) and a storage controller controlling the nonvolatile memory. The storage controller is configured to receive a command from a host device giving instructions to sanitize data with the use of a cryptographic erase. The storage controller is also configured to, in response to a request from the host device, transmit to the host device a first verification value indicative of whether a first media encryption key (MEK) stored in the NVM has been deleted and a second verification value indicative of whether a second MEK, which is different from the first MEK, has been generated and stored in the NVM.
Abstract:
A storage device is provided. The storage device includes a boot ROM stores a plurality of public keys and a boot ROM image, an OTP memory identifies a first public key among the plurality of public keys, a first memory including a first area the stores the plurality of public keys and a flash boot image different from the boot ROM image, and a second area that stores a first boot signature corresponding to the flash boot image, a second memory including a first firmware image including a first firmware signature, and a memory controller that receives a second firmware image including a second firmware signature and a second boot signature, receives a second public key among the plurality of public keys and the flash boot image based on the second firmware image being received, and write the second boot signature in the second area of the first memory.