Abstract:
An apparatus and a method for expanding an operation region in an envelope tracking power amplifier are provided. The apparatus for amplifying power of a transmission signal includes an amplitude component determination unit, a supply modulator, and a power amplify module. The amplitude component determination unit determines an amplitude component of a transmission signal. The supply modulator generates a supply voltage to be provided to the power amplify module depending on the amplitude component of the transmission signal determined by the amplitude component determination unit. The power amplify module amplifies power of the transmission signal depending on the supply voltage generated by the supply modulator.
Abstract:
A transmitter in a wireless communication system is provided. The transmitter includes a baseband signal processor for detecting an envelope signal, a supply modulator (SM) for producing power to be supplied to a power amplifier using the detected envelope signal, and the power amplifier for receiving voltage from the SM and for amplifying power of a transmit signal. The SM generates a compensation signal corresponding to switching noise generated via switching amplification, and adds the compensation signal and the switching noise. The amplifier of the wireless communication system can produce low switching noise, and the envelope tracking power amplifier can prevent reception degradation due to the noise of the supply modulator.
Abstract:
A transmit apparatus having a supply modulator is provided. The apparatus includes a detector and the supply modulator. In the method, the detector detects an output signal of the supply modulator. Also, the supply modulator receives the detected output signal of the supply modulator from the detector and calibrates a modulation characteristic of the supply modulator. The transmit apparatus having a supply modulator includes a modulator/demodulator (modem) and the supply modulator. The modem provides a calibration signal for calibrating a modulation characteristic of the supply modulator, to the supply modulator. The supply modulator outputs a modulated signal in accordance with the calibrated modulation characteristic of the supply modulator based on the calibration signal from the modem.
Abstract:
A parallel output linear amplifier is provided that includes a transconductance amplifier configured to receive an analog input signal from an input terminal and amplify the analog input signal. The parallel output linear amplifier also includes a first pre-amplifier connected to the transconductance amplifier and operated using a floating drive voltage, and a cascode class AB amplifier connected to the first pre-amplifier and configured to provide an amplified signal to an output terminal. The parallel output linear amplifier further includes a second pre-amplifier configured connected to the transconductance amplifier and operated using the floating drive voltage, and a cascade class AB amplifier connected to the second pre-amplifier and configured to provide an amplified signal to the output terminal.
Abstract:
An apparatus for amplifying power is provided. The apparatus includes a supply modulator for generating a supply voltage based on an amplitude component of a transmission signal, and a power amplify module for amplifying power of the transmission signal using the supply voltage, wherein the power amplify module includes a first power amplifier and a second power amplifier, and when an output power of the transmission signal is greater than a reference power, the first power amplifier amplifies the power of the transmission signal using the supply voltage, and when the output power of the transmission signal is equal to or less than the reference power, the second power amplifier amplifies the power of the transmission signal using the supply voltage.
Abstract:
An apparatus of a hybrid power modulator using interleaving switching is provided. The apparatus includes a linear switching unit for generating an output signal by comparing an envelope input signal and a feedback signal, an interleaving signal generator for generating an interleaving switching signal arranged not to supply the signal to input stages of P-type Metal-Oxide-Semiconductor (MOS) Field Effect Transistors (FETs) and N-type MOS FETs of power cells at the same time by comparing the output signal and a reference signal, and a switching amplifying unit for determining a level of the switching signal using the interleaving switching signal. Hence, the hybrid power modulator using the interleaving switching method in the envelope signal of the wide bandwidth maintains high efficiency and high linearity. In addition, the buck converter can use the single inductor by preventing the simultaneous on/off of the power cells.
Abstract:
An apparatus and method for improving the efficiency of a power supply modulator for modulating a supply voltage of a power amplifier are provided. The apparatus for generating a supply voltage includes a Switching Mode Power Supplier (SMPS) module for generating a current of a power supply signal, and a linear regulator for generating a source current for supplementing an insufficient amount of the current generated by the SMPS module and a sink current for eliminating an excessive amount of the current generated by the SMPS module. The SMPS module generates the current of the power supply signal by selecting at least one of a plurality of power supplies that have different voltages according to a voltage level of an input signal of the SMPS module.