Abstract:
Provided is a method of manufacturing a transparent circuit substrate for a touch screen. The method may involve forming an electrode layer on a transparent substrate, stacking a light shielding layer on the transparent substrate such that the light shielding layer is located on an outside of the electrode layer, stacking a mask on the light shielding layer and the electrode layer, forming a conductive layer on the mask, forming connecting lines for connecting the electrode layer and connecting terminals by removing the mask and a portion of the conductive layer, and forming the connecting terminals on the light shielding layer such that the connecting terminals contact the connecting lines.
Abstract:
A source driver circuit is provided which includes a plurality of digital multi-spread (hereinafter referred to as “DMS”) blocks configured to generate DMS signals for controlling an output timing of a data signal to be transmitted to a display panel from a plurality of clocks which are delayed as much as a reference period one another. Each DMS block includes a plurality of sub blocks. Each of the sub blocks includes an enable signal generator and a delay unit. The enable signal generator generates an enable signal for outputting target DMS signals of the DMS signals using clocks selected from the plurality of clocks. The delay unit delays the DMS signals such that the DMS signals are sequentially delayed by the reference period.
Abstract:
A source driving circuit includes an output buffer circuit to compensate for slew rate of signals used to drive a display device. The output buffer circuit includes a bias current control signal generating circuit and a channel amplifying circuit. The bias current control signal generating circuit performs an exclusive OR operation on an input signal and an output signal of a reference operational amplifier to generate a bias current control signal. The channel amplifying circuit adjusts the slew rate of a plurality of output voltage signals in response to the bias current control signal. The output signals are then used to control the display device.
Abstract:
A source driver circuit is provided which includes a plurality of digital multi-spread (hereinafter referred to as “DMS”) blocks configured to generate DMS signals for controlling an output timing of a data signal to be transmitted to a display panel from a plurality of clocks which are delayed as much as a reference period one another. Each DMS block includes a plurality of sub blocks. Each of the sub blocks includes an enable signal generator and a delay unit. The enable signal generator generates an enable signal for outputting target DMS signals of the DMS signals using clocks selected from the plurality of clocks. The delay unit delays the DMS signals such that the DMS signals are sequentially delayed by the reference period.
Abstract:
A power factor correction circuit and an electronic product including the same are disclosed. This technology configures a bridgeless circuit with no rectifier diode by using an additional switch, eliminating conduction loss due to the diode and reducing common mode EMI noise of the power factor correction circuit. A power factor correction circuit includes at least one inductor directly connected to an AC input stage, an output capacitor to smooth the output voltage, first switching elements to control current to store magnetic energy in the inductor, and a second switching element to maintain a substantially constant voltage between a ground voltage of an AC input stage and a ground voltage of an output stage.