Abstract:
Provided is a method of transferring semiconductor elements formed on a non-flexible substrate to a flexible substrate. Also, provided is a method of manufacturing a flexible semiconductor device based on the method of transferring semiconductor elements. A semiconductor element grown or formed on the substrate may be efficiently transferred to the resin layer while maintaining an arrangement of the semiconductor elements. Furthermore, the resin layer acts as a flexible substrate supporting the vertical semiconductor elements.
Abstract:
The present disclosure relates to a method of transferring semiconductor elements from a non-flexible substrate to a flexible substrate. The present disclosure also relates to a method of manufacturing a flexible semiconductor device based on the method of transferring semiconductor elements. The semiconductor elements grown or formed on a non-flexible substrate may be effectively transferred to a resin layer while maintaining an arrangement of the semiconductor elements. The resin layer may function as a flexible substrate for supporting the vertical semiconductor elements.
Abstract:
A display panel may include a plurality of opening regions controlling one of transmission and blocking of incident light to form an image, a non-opening region between the plurality of opening regions, the non-opening region configured to not transmit the incident light, and at least one oblique reflective plate in the non-opening region to obliquely reflect the incident light.
Abstract:
A nano composite with superhydrophobic surfaces including a bulk portion and a surface portion having a superhydrophobic pattern, wherein the bulk portion and the surface portion include the same material, and methods of manufacturing of the nano composite.