Abstract:
A method of forming a thin film resistive heating layer, the method including: forming a polymer layer by extruding a polymer paste, in which an electrically conductive filler is dispersed, by using an extrusion molding operation, on an outer circumferential surface of a cylindrical member; and forming a thin film resistive heating layer by making an outer diameter of the polymer layer uniform by using a ring blading operation.
Abstract:
A resin dispenser for nano-imprinting includes a housing including a lower chamber in which a resin is filled, a slit defined in a lower part of the lower chamber and through which the resin is discharged, and an upper chamber in which a pressure-applying fluid is filled, and a membrane separating the lower and upper chambers from each other, and of which an edge is fixed on a middle part of the housing, where the fluid is configured to apply the pressure to the membrane and protrude the membrane toward the slit of the lower chamber.
Abstract:
A resistance heating element includes a positive temperature coefficient resistance heating layer having a positive temperature coefficient, and a negative temperature coefficient resistance heating layer, which is connected to the positive temperature coefficient resistance heating layer and has a negative temperature coefficient.
Abstract:
A resin dispenser for nano-imprinting includes a housing including a lower chamber in which a resin is filled, a slit defined in a lower part of the lower chamber and through which the resin is discharged, and an upper chamber in which a pressure-applying fluid is filled, and a membrane separating the lower and upper chambers from each other, and of which an edge is fixed on a middle part of the housing, where the fluid is configured to apply the pressure to the membrane and protrude the membrane toward the slit of the lower chamber.
Abstract:
A method of preparing a nano-composite layer comprising superhydrophobic surfaces, the method comprising: providing a first roll and a second roll with a predetermined gap therebetween; rotating the first roll and the second roll in a direction towards each other, wherein a linear velocity of the first roll is greater than a linear velocity of the second roll; supplying a composition for the nano-composite layer to the predetermined gap to form a composition layer having a first thickness on a circumference of the first roll; adjusting the linear velocity of the first roll, the second roll, or both, such that the linear velocity of the second roll is greater than or equal to the linear velocity of the first roll to form the nano-composite layer; and separating the nano-composite layer from the first roll.
Abstract:
A fusing apparatus including a heating unit including a heater having a substantially flat shape; a nip forming unit which faces the heating unit and forms a fusing nip with the heating unit; and a driving unit which moves the heating unit to alternately repeat a forward motion whereby the heating unit moves forward in a moving direction of the recording medium, when the fusing nip is formed, and a returning motion whereby the heating unit moves backward in a direction opposite to the moving direction of the recording medium, when the fusing nip is released.
Abstract:
A heating member includes: a resistive heating layer including: a medium-passing area, and non-medium-passing areas respectively on opposing sides of the medium-passing area at opposing side portions of the resistive heating layer; a core which supports the resistive heating layer; a thermally conductive layer between the resistive heating layer and the core, and disposed in a non-medium passing area at a side portion of the resistive heating layer; and an electrode which is between the resistive heating layer and the core, contacts the side portion of the resistive heating layer and supplies current to the resistive heating layer. A ratio of a contact area between the thermally conductive layer and the resistive heating layer to an area of the non-medium-passing area in which the thermally conductive layer is disposed, ranges from about 5% to about 25%.
Abstract:
A nano composite with superhydrophobic surfaces including a bulk portion and a surface portion having a superhydrophobic pattern, wherein the bulk portion and the surface portion include the same material, and methods of manufacturing of the nano composite.
Abstract:
A heating member for a fusing apparatus includes a resistive heating layer including a base polymer and an electroconductive filler dispersed in the base polymer, where the resistive heating layer generates heat by receiving electric energy, and where a storage modulus of the resistive heating layer is about 1.0 megapascal or greater.
Abstract:
A heating member includes: a resistive heating layer which generates heat when supplied with electrical energy; a release layer as an outermost layer of the heating member and including a polymer; an intermediate layer disposed between the resistive heating layer and the release layer. The resistive heating layer includes a base polymer, and an electroconductive filler dispersed in the base polymer. The intermediate layer includes a polymer material being a same type as the base polymer of the resistive heating layer or the polymer of the release layer.