Abstract:
A method of inspecting a semiconductor device including setting a target place on a wafer, the target place including a deep trench, forming a first cut surface by performing first milling on the target place in a first direction, obtaining first image data of the first cut surface, forming a second cut surface by performing second milling on the target place in a second direction opposite to the first direction, obtaining second image data of the second cut surface, obtaining a plurality of first critical dimension (CD) values for the deep trench from the first image data, obtaining a plurality of second CD values for the deep trench from the second image data, analyzing a degree of bending of the deep trench based on the first CD values and the second CD values, and providing the semiconductor device meeting a condition based on results of the analyzing may be provided.
Abstract:
A method of measuring an overlay offset using a scanning electron microscope system includes: scanning an in-cell region, which includes a lower structure and an upper structure stacked in a sample, using a primary electron beam with a landing energy of at least 10 kV; detecting electrons emitted from the scanned in-cell region; and measuring an overlay offset with respect to overlapping patterns included in the in-cell region using an image of the in-cell region that is generated based on the detected electrons emitted from the scanned in-cell region.
Abstract:
A method of measuring an overlay offset using a scanning electron microscope system includes: scanning an in-cell region, which includes a lower structure and an upper structure stacked in a sample, using a primary electron beam with a landing energy of at least 10 kV; detecting electrons emitted from the scanned in-cell region; and measuring an overlay offset with respect to overlapping patterns included in the in-cell region using an image of the in-cell region that is generated based on the detected electrons emitted from the scanned in-cell region.