Abstract:
A method of measuring an overlay offset using a scanning electron microscope system includes: scanning an in-cell region, which includes a lower structure and an upper structure stacked in a sample, using a primary electron beam with a landing energy of at least 10 kV; detecting electrons emitted from the scanned in-cell region; and measuring an overlay offset with respect to overlapping patterns included in the in-cell region using an image of the in-cell region that is generated based on the detected electrons emitted from the scanned in-cell region.
Abstract:
A scanning probe inspector comprises: a probe that includes a cantilever and a tip whose length corresponds to a depth of a trench that is formed in a wafer; a trench detector that acquires location information of the trench using the probe, where the location information includes depth information of the trench; a controller that inserts the tip into a first point where there exists a trench based on the location information of the trench, and moves the tip through the trench using the location information of the trench; and a defect detector that detects a presence of a defect in a sidewall of the trench as the tip is moved through the trench.
Abstract:
An apparatus for exchanging a probe includes a stacker configured to receive a probe and to align the probe, a probe connector connected to the probe, and a laser alignment unit including a light emitter and a light receiver. The light emitter is configured to emit a laser beam to the probe, and the light receiver is configured to detect the laser beam reflected by the probe. The laser alignment unit is configured to detect when the probe is properly aligned on the probe connector using the light receiver, and the laser alignment unit is configured to stop moving the stacker when it is detected that the probe is properly aligned.
Abstract:
A process management system can include a processing device that can be configured to perform a semiconductor process on a plurality of wafers, the processing device controlled by a process parameter. A control device can be configured to acquire statistical data relating to the process parameter and can be configured to select a reference wafer from the plurality of wafers. The control device can be configured to compare a respective process parameter used for the reference wafer with the statistical data and can be configured to set a reference condition for the process parameter.
Abstract:
A method of measuring an overlay offset using a scanning electron microscope system includes: scanning an in-cell region, which includes a lower structure and an upper structure stacked in a sample, using a primary electron beam with a landing energy of at least 10 kV; detecting electrons emitted from the scanned in-cell region; and measuring an overlay offset with respect to overlapping patterns included in the in-cell region using an image of the in-cell region that is generated based on the detected electrons emitted from the scanned in-cell region.
Abstract:
A scanning probe inspector comprises: a probe that includes a cantilever and a tip whose length corresponds to a depth of a trench that is formed in a wafer; a trench detector that acquires location information of the trench using the probe, where the location information includes depth information of the trench; a controller that inserts the tip into a first point where there exists a trench based on the location information of the trench, and moves the tip through the trench using the location information of the trench; and a defect detector that detects a presence of a defect in a sidewall of the trench as the tip is moved through the trench.
Abstract:
A method of testing can include providing a first beam having a first focal length and a second beam having a second focal length that is less than the first focal length to a stage region to provide a first reflected beam and a second reflected beam from the stage region. The first reflected beam can be detected among the first reflected beam and the second reflected beam reflected from the stage region. The second reflected beam can be detected among the first reflected beam and the second reflected beam reflected from the stage region. A first image can be generated from the first reflected beam and a second image can be generated from the second reflected beam. The first image and the second image can be combined to provide a 3D image.
Abstract:
A 3D profiling system of a semiconductor chip is provided and includes a storage unit that receives scanning electron microscope (SEM) images of a plurality of semiconductor devices having respective data with respect to a plurality of different components and gray levels of each SEM image. An extraction unit that performs principal component analysis (PCA) on the gray level of the SEM image and separates principal components from among the plurality of different components is also part of the system. Additionally, a calculation unit receives provision of actually measured values of the plurality of semiconductor devices, and applies a multiple linear regression to the principal components based on the measured values to complete a 3D profile of the semiconductor chip.