Abstract:
A method of manufacturing an integrated circuit (IC) including instances of standard cells includes arranging a first instance and arranging a second instance adjacent to the first instance. The second instance has a front-end layer pattern corresponding to a context group of the first instance. The context group includes information about front-end layer patterns of instances, the front-end layer patterns causing a same local layout effect (LLE) on the first instance and arranged adjacent to the first instance.
Abstract:
A system and method of designing an integrated circuit (IC) by considering a local layout effect are provided. The method of designing an IC may place instances of pre-placement cells so as to decrease occurrence of a local layout effect (LLE) causing structure. The method may extract a context of an instance from a peripheral layout of each of the placed instances to estimate an LLE of the instance, thereby analyzing a performance of the IC.
Abstract:
A computer implemented method for analyzing a timing of an integrated circuit, wherein an interconnection of a first net of the integrated circuit includes at least one conducting segment formed in a wiring layer or a via layer, includes obtaining a plurality of resistances and a plurality of capacitances, which correspond to each of the at least one conducting segment, based on a process variation, counting a number of layers in which the at least one conducting segments is formed, and calculating a corner resistance and a corner capacitance of the first net, based on the number of layers, the plurality of resistances, and the plurality of capacitances, wherein the counting of the number of layers includes calculating an effective number of layers based on a resistance variability and/or a capacitance variability of each of the layers.
Abstract:
A method of analyzing an integrated circuit, which is implemented by a computing system or a processor, wherein an interconnection of a first net of the integrated circuit includes at least one conducting segment corresponding to one wiring layer or one via, includes receiving a plurality of resistances and a plurality of capacitances, which correspond to the first net, based on a process variation, counting a number of conducting segments corresponding to the first net, and calculating a first resistance or a first capacitance of the first net, based on the number of conducting segments, the plurality of resistances, and the plurality of capacitances.
Abstract:
A computer implemented method for analyzing a timing of an integrated circuit, wherein an interconnection of a first net of the integrated circuit includes at least one conducting segment formed in a wiring layer or a via layer, includes obtaining a plurality of resistances and a plurality of capacitances, which correspond to each of the at least one conducting segment, based on a process variation, counting a number of layers in which the at least one conducting segments is formed, and calculating a corner resistance and a corner capacitance of the first net, based on the number of layers, the plurality of resistances, and the plurality of capacitances, wherein the counting of the number of layers includes calculating an effective number of layers based on a resistance variability and/or a capacitance variability of each of the layers.
Abstract:
A method of analyzing an integrated circuit, which is implemented by a computing system or a processor, wherein an interconnection of a first net of the integrated circuit includes at least one conducting segment corresponding to one wiring layer or one via, includes receiving a plurality of resistances and a plurality of capacitances, which correspond to the first net, based on a process variation, counting a number of conducting segments corresponding to the first net, and calculating a first resistance or a first capacitance of the first net, based on the number of conducting segments, the plurality of resistances, and the plurality of capacitances.
Abstract:
A method of manufacturing an integrated circuit (IC) including instances of standard cells includes arranging a first instance and arranging a second instance adjacent to the first instance. The second instance has a front-end layer pattern corresponding to a context group of the first instance. The context group includes information about front-end layer patterns of instances, the front-end layer patterns causing a same local layout effect (LLE) on the first instance and arranged adjacent to the first instance.