Abstract:
A display controller includes a resource controller configured to receive layer information about each of a first layer and a second layer that are output at different times through a display panel during a unit frame. The display controller includes a data input direct memory access (DMA) configured to receive first image data corresponding to the first layer and second image data corresponding to the second layer, and a hardware resource configured to receive the first and second image data from the data input DMA, process the received first and second image data according to the layer information, and generate first layer data of the first layer and second layer data of the second layer. The resource controller is configured to control the data input DMA according to the layer information to determine an order in which the first and second image data are provided to the hardware resource.
Abstract:
A structure of an ice making compartment of a refrigerator capable of enlarging the volume of a storage compartment by reducing a width of an ice making compartment, and capable of easily discharging the whole ice separately from pieces of ice, the refrigerator including an opening/closing member configured to open and close a portion of a discharge hole and having a cover portion to prevent the whole ice from being discharged in a state that the portion of the discharge hole is closed, the refrigerator including an opening/closing member integrally formed with a fixed blade configured to crush ice in cooperation with a rotary blade.
Abstract:
A semiconductor device includes first and second isolation regions, a first active region extending in a first direction between the first and second isolation regions, a first fin pattern on the first active region, nanowires on the first fin pattern, a gate electrode in a second direction on the first fin pattern, the gate electrode surrounding the nanowires, a first source/drain region on a side of the gate electrode, the first source/drain region being on the first active region and in contact with the nanowires, and a first source/drain contact on the first source/drain region, the first source/drain contact including a first portion on a top surface of the first source/drain region, and a second portion extending toward the first active region along a sidewall of the first source/drain region, an end of the first source/drain contact being on one of the first and second isolation regions.
Abstract:
An electronic device according to an embodiment may comprise: a housing including a first slit having a length corresponding to a first frequency and a second slit extending from one point of the first slit in a different direction from the first slit and having a length corresponding to a second frequency, and configured to resonate at the first frequency and the second frequency by the first slit and the second slit; a printed circuit board disposed in the housing and at least partially made of a non-conductive material in regions corresponding to the first slit and the second slit; and a power supply unit for supplying power through one point of the housing, adjacent to the first slit or the second slit. Various other embodiments recognized from the specification are also possible.
Abstract:
An electronic device, a method, and a chip set are provided. The electronic device includes a memory configured to store at least one of audio feature data of audio data and speech recognition data obtained by speech recognition of audio data; and a control module connected to the memory, wherein the control module is configured to update a voice command that is set to execute a function through voice, the function being selected based on at least one of the audio feature data, the speech recognition data, and function execution data executed in relation to the audio data.
Abstract:
An evaporative humidifier including a water bucket, a tub configured to accommodate water introduced from the water bucket, a humidifying element configured to execute humidification by receiving the water accommodated in the tub and evaporating the received water, and an ultraviolet ray emitting part provided on the tub to emit ultraviolet rays to the tub.
Abstract:
A method and an electronic device for providing environment information are provided. The electronic device includes a sensor configured to measure an environmental factor and obtain first data based on the measured environmental factor, a communication module configured to receive, from at least one external electronic device, second data obtained by the at least one external device, a processor configured to generate environment information based on the first data and the received second data received, and an output module configured to display the environment information.
Abstract:
A semiconductor device includes a first semiconductor layer having first and second regions, a plurality of first channel layers spaced apart from each other in a vertical direction on the first region of the first semiconductor layer, a first gate electrode surrounding the plurality of first channel layers, a plurality of second channel layers spaced apart from one another in the vertical direction on the second region of the first semiconductor layer, and a second gate electrode surrounding the plurality of second channel layers, wherein each of the plurality of first channel layers has a first crystallographic orientation, and each of the plurality of second channel layers has a second crystallographic orientation different from the first crystallographic orientation, and wherein a thickness of each of the plurality of first channel layers is different from a thickness of each of the plurality of second channel layers.
Abstract:
An image processor, an application processor, a method of operating an image processor, and a chips set of an image processor are provided. The image processor includes a scaler configured to perform scaling on an input image and generate a scaled input image; and a selection circuit configured to transmit the scaled input image to either a low latency memory or a high density memory according to a memory selection signal. The application processor includes a memory configured to store an input image; and an image processor configured to scale the input image, wherein the image processor comprises a scaler configured to perform scaling on the input image and generate a scaled input image and a selection circuit configured to transmit the scaled input image to either a low latency memory or a high density memory according to a memory selection signal.
Abstract:
A system on chip and a mobile device are provided. The mobile device comprises a processor configured to receive raw image data, process the raw image data into floating-point format image data, and output the floating-point format image data, a memory configured to store therein the floating-point format image data, and a display processing unit configured to receive the floating-point format image data stored in the memory therefrom, and perform high dynamic range (HDR) processing on the floating-point format image data.