Abstract:
According to example embodiments, a semiconductor device may include a high electron mobility transistor (HEMT) on a first region of a substrate, and a diode on a second region of the substrate. The HEMT may be electrically connected to the diode. The HEMT and the diode may be formed on an upper surface of the substrate such as to be spaced apart from each other in a horizontal direction. The HEMT may include a semiconductor layer. The diode may be formed on another portion of the substrate on which the semiconductor layer is not formed. The HEMT and the diode may be cascode-connected to each other.
Abstract:
A higher electron mobility transistor (HEMT) and a method of manufacturing the same are disclosed. According to example embodiments, the HEMT may include a channel supply layer on a channel layer, a source electrode and a drain electrode that are on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a source pad and a drain pad. The source pad and a drain pad electrically contact the source electrode and the drain electrode, respectively. At least a portion of at least one of the source pad and the drain pad extends into a corresponding one of the source electrode and drain electrode that the at least one of the source pad and the drain pad is in electrical contact therewith.
Abstract:
A nitride-based semiconductor diode includes a substrate, a first semiconductor layer disposed on the substrate, and a second semiconductor layer disposed on the first semiconductor layer. The first and second semiconductor layers include a nitride-based semiconductor. A first portion of the second semiconductor layer may have a thickness thinner than a second portion of the second semiconductor layer. The diode may further include an insulating layer disposed on the second semiconductor layer, a first electrode covering the first portion of the second semiconductor layer and forming an ohmic contact with the first semiconductor layer and the second semiconductor layer, and a second electrode separated from the first electrode, the second electrode forming an ohmic contact with the first semiconductor layer and the second semiconductor layer.
Abstract:
Example embodiments relate to semiconductor devices and/or methods of manufacturing the same. According to example embodiments, a semiconductor device may include a first heterojunction field effect transistor (HFET) on a first surface of a substrate, and a second HFET. A second surface of the substrate may be on the second HFET. The second HFET may have different properties (characteristics) than the first HFET. One of the first and second HFETs may be of an n type, while the other thereof may be of a p type. The first and second HFETs may be high-electron-mobility transistors (HEMTs). One of the first and second HFETs may have normally-on properties, while the other thereof may have normally-off properties.
Abstract:
According to example embodiments, a HEMT includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode spaced apart on the channel layer, a depletion-forming layer on the channel supply layer, and a plurality of gate electrodes on the depletion-forming layer between the source electrode and the drain electrode. The channel supply layer is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured to form a depletion region in the 2DEG. The plurality of gate electrodes include a first gate electrode and a second gate electrode spaced apart from each other.
Abstract:
An electronic device may include a first transistor having a normally-on characteristic; a second transistor connected to the first transistor and having a normally-off characteristic; a constant voltage application unit configured to apply a constant voltage to a gate of the first transistor; and a switching unit configured to apply a switching signal to the second transistor. The first transistor may be a high electron mobility transistor (HEMT). The second transistor may be a field-effect transistor (FET). The constant voltage application unit may include a diode connected to the gate of the first transistor; and a constant current source connected to the diode.
Abstract:
Provided are a high electron mobility transistor (HEMT) and a method of manufacturing the HEMT. The HEMT includes: a channel layer comprising a first semiconductor material; a channel supply layer comprising a second semiconductor material and generating two-dimensional electron gas (2DEG) in the channel layer; a source electrode and a drain electrode separated from each other in the channel supply layer; at least one depletion forming unit that is formed on the channel supply layer and forms a depletion region in the 2DEG; at least one gate electrode that is formed on the at least one depletion forming unit; at least one bridge that connects the at least one depletion forming unit and the source electrode; and a contact portion that extends from the at least one bridge under the source electrode.
Abstract:
A high electron mobility transistor (HEMT) according to example embodiments includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a Schottky electrode forming a Schottky contact with the channel supply layer. An upper surface of the channel supply layer may define a Schottky electrode accommodation unit. At least part of the Schottky electrode may be in the Schottky electrode accommodation unit. The Schottky electrode is electrically connected to the source electrode.
Abstract:
According to example embodiments, a higher electron mobility transistor (HEMT) may include a first channel layer, a second channel layer on the first channel layer, a channel supply on the second channel layer, a drain electrode spaced apart from the first channel layer, a source electrode contacting the first channel layer and contacting at least one of the second channel layer and the channel supply layer, and a gate electrode unit between the source electrode and the drain electrode. The gate electrode unit may have a normally-off structure. The first and second channel layer form a PN junction with each other. The drain electrode contacts at least one of the second channel layer and the channel supply layer.
Abstract:
According to example embodiments, a method for controlling a gate voltage applied to a gate electrode of a high electron mobility transistor (HEMT) may include measuring a voltage between a drain electrode and a source electrode of the HEMT, and adjusting a level of the gate voltage applied to the gate electrode of the HEMT according to the measured voltage. The level of the gate electrode may be adjusted if the voltage between the drain electrode and the source electrode is different than a set value.