Abstract:
Methods and apparatuses are provided for receiving control information by a terminal. A control channel message is received on a control channel. Control information comprising a transmission rank and precoding matrix information is extracted from the control channel message if a common pilot is used for data demodulation. The control information comprising the transmission rank and information about a dedicated pilot is extracted from the control channel message if the dedicated pilot is used for the data demodulation.
Abstract:
Methods and apparatuses are provided for receiving control information by a terminal. A control channel message is received on a control channel. Control information is extracted from the control channel message. The control information includes a transmission rank and precoding matrix information if a common pilot is used for data demodulation. The control information includes the transmission rank and information about a dedicated pilot if the dedicated pilot is used for the data demodulation.
Abstract:
A method apparatus and system for efficiently transmitting and receiving channels are provided in a wireless communication system based on Orthogonal Frequency Division Multiplexing (OFDM). A multiplexing scheme differs according to a channel when a transmitter transmits a packet data channel, a common control channel and a control channel designated for a particular user. Uncoded 1-bit information is broadly dispersed in frequency and time domains using multiplexing technology for maximizing diversity in a channel for transmitting information of at least one bit to a particular user like an acknowledgement (ACK) channel. The transmitter converts a sequence obtained by multiplexing multiple bits to be transmitted to a plurality of users to parallel signals, and broadly disperses the parallel signals in the time and frequency domains. When the uncoded 1-bit information is transmitted, reception reliability is improved because channel coding and transmission are efficiently performed using a small amount of resources.
Abstract:
A method apparatus and system for efficiently transmitting and receiving channels are provided in a wireless communication system based on Orthogonal Frequency Division Multiplexing (OFDM). A multiplexing scheme differs according to a channel when a transmitter transmits a packet data channel, a common control channel and a control channel designated for a particular user. Uncoded 1-bit information is broadly dispersed in frequency and time domains using multiplexing technology for maximizing diversity gain in a channel for transmitting information of at least one bit to a particular user like an acknowledgement (ACK) channel. The transmitter converts a sequence obtained by multiplexing multiple bits to be transmitted to a plurality of users to parallel signals, and broadly disperses the parallel signals in the time and frequency domains. When the uncoded 1-bit information is transmitted, reception reliability is improved because channel coding and transmission are efficiently performed using a small amount of resources.
Abstract:
Methods and apparatuses are provided for transmitting control information to a terminal, by a base station, in a Multiple Input Multiple Output (MIMO) mobile communication system. The control information is generated including a field indicating either a precoding scheme or a pilot format according to a type of pilot used for data demodulation in the terminal. The control information is transmitted to the terminal.
Abstract:
Methods and apparatuses are provided for transmitting feedback information in a communication system supporting multiple transmission methods with multi antenna transmission. Information for a default Multiple Input Multiple Output (MIMO) mode is received. It is determined whether the default MIMO mode is a Single-User MIMO mode or a Multi-User MIMO mode based on the information for the default MIMO mode. First Channel Quality Indicator (CQI) feedback information is calculated for one of the Single-User MIMO mode and the Multi-User MIMO mode determined as the default MIMO mode. The first CQI feedback information and DELTA CQI feedback information, which is a differential value between the first CQI feedback information and second CQI feedback information for a non-default MIMO mode, are transmitted.
Abstract:
An apparatus and method are provided for feeding back channel quality information and performing scheduling using the fed-back channel quality information in a wireless communication system based on Orthogonal Frequency Division Multiple Access (OFDMA). In the OFDMA wireless communication system, forward performance degradation due to a decrease in an amount of reverse channel quality information is reduced, and also an increase in the reverse load due to channel quality information feedback is suppressed. A base station controls power of a physical channel using information fed back from a mobile station. In a method for feeding back channel quality information from the mobile station, sub-band-by-sub-band channel quality information is measured and channel-by-channel quality information of a number of channels is transmitted in order of sub-bands of better channel quality information. Average channel quality information for a total band is measured and transmitted.
Abstract:
An apparatus and method are provided for feeding back channel quality information and performing scheduling using the fed-back channel quality information in a wireless communication system based on Orthogonal Frequency Division Multiple Access (OFDMA). In the OFDMA wireless communication system, forward performance degradation due to a decrease in an amount of reverse channel quality information is reduced, and also an increase in the reverse load due to channel quality information feedback is suppressed. A base station controls power of a physical channel using information fed back from a mobile station. In a method for feeding back channel quality information from the mobile station, sub-band-by-sub-band channel quality information is measured and channel-by-channel quality information of a number of channels is transmitted in order of sub-bands of better channel quality information. Average channel quality information for a total band is measured and transmitted.
Abstract:
Methods and apparatuses are provided for transmitting and receiving data in a wireless communication system. Hopping information including at least a number of sub-bands is received. Resource allocation information is received. A resource for transmitting the data is determined based on the resource allocation information and the hopping information. The data is transmitted using the determined resource. The resource for transmitting the data is determined according to at least one of applying a change of a resource allocation within inter sub-bands and applying a change of the resource allocation within an intra sub-band. A sub-band includes at least one sub-channel, and one sub-channel includes a plurality of sub-carriers.
Abstract:
Methods and apparatus are provided for transmitting and receiving data in a communication system with a plurality of antennas. Data and a first pilot are generated. The first pilot is transmitted at a first position in a frequency domain that corresponds to a position of the generated data in the frequency domain and at a first position in a time domain that is with the generated data, in every transmission time interval of the data. A second pilot is generated. The second pilot is transmitted at predetermined second positions in the time domain and the frequency domain, in a transmission time interval that is predefined by a transmitter and a receiver.