摘要:
A water-saturated core sample of a porous rock is placed in a sleeve which a hydrophobic membrane in one end and a hydrophilic membrane in a second end. A pressurized hydrocarbon is injected into the core sample through the hydrophobic membrane to displace the water in the core sample whereby it drains through the hydrophilic membrane into a collector. Upon a depressurization of the injected hydrocarbon below the displacement pressure of the hydrophilic membrane, the water imbibes back into the core sample through the hydrophilic membrane. Upon a pressurization of the imbibing water above atmospheric pressure the water displaces the hydrocarbon from the core sample through the hydrophobic membrane.
摘要:
A core sample from a subterranean formation is shaped to provide a plurality of parallel, planar outer surfaces. Electrical resistivity is measured in each of the azimuthal directions through the core sample which are perpendicular to each of the pairs of parallel, planar outer surfaces for each of a plurality of differing fluid saturations within the core sample. A logarithmic plot is made of measured resistivity versus water saturation for each of the azimuthal directions through the core sample for which resistivity was measured. If the same logarithmic plot is obtained for all measured azimuthal directions, the core sample is identified as being electrically isotropic. If different logarithmic plots are obtained for at least 2 azimuthal directions the core sample is identified as being electrically anisotropic.
摘要:
A method for extracting bitumen from crushed mined tar sands comprising contacting the mined tar sands with a solvent in the presence of sonic energy in the frequency range of 0.5 to 2.0 kHz. Specifically, a solvent is first mixed with crushed mined tar sands and the mixture is then formed into a slurry of tar sand suspended in the solvent. Thereafter the tar sand slurry is injected into the top of a vertically disposed, substantially rectangular shaped, hollow acoustic chamber of uniform cross-section. Fresh solvent is injected into the bottom of the acoustic chamber and flows upwardly through the cell. The fresh solvent is injected into the bottom of the acoustic chamber at a rate low enough whereby the tar sand particles in the slurry fall by gravity through the upwardly flowing solvent. The tar sand particles and solvent in the acoustic chamber are subjected to acoustic energy in the frequency range of 0.5 to 2.0 kHz whereby the bitumen is separated from the tar sand and dissolved by the upwardly flowing solvent without cavitation of the solvent. The bitumen dissolved in the solvent is recovered from the top of the acoustic chamber and transferred by pipeline to an off-site refinery. The bitumen-extracted sand particles recovered from the bottom of the acoustic chamber may be recycled to the top of the acoustic chamber to recover additional bitumen after injection of the slurry has been discontinued.
摘要:
A material sample representative of a subsurface formation is tested for its dynamic interaction with a coring fluid. The material sample is subjected to a pressurized and agitating coring fluid to simulate a coring operation. Thereafter the material sample is x-ray scanned to identify the extent of coring fluid invasion during the dynamic interaction of the material sample and the coring fluid.
摘要:
A method for breaking an emulsion comprising oil and water into oil and water phases comprising treating the emulsion with a chemical demulsifier and passing the mixture through a hollow chamber having a uniform cross-section and subjecting the mixture to acoustic energy in the frequency range of about 0.5 to 10.0 kHz, preferably 1.25 kHz, to enhance breaking the emulsion into a water phase and oil phase. The oil phase is then separated from the water phase by gravity separation and recovered. The sonic energy is generated by a transducer attached to the mid-section of the upper or lower outer surface of the hollow chamber. For emulsions containing light oil having an API gravity greater than 20 and water, the emulsion can be broken by the use of acoustic energy in the frequency range of about 0.5 to 10.0 kHz without the addition of chemical demulsifiers.
摘要:
Heavy crude oil containing at least 1% by weight water is hydrotreated and upgraded while being produced downhole in a production well. During production the heavy crude oil containing water is subjected to sonic energy at a low frequency of 400 Hz to 10 kHz downhole in the presence of a metal hydrogenation catalyst that causes the water in the crude oil to react and form hydrogen which then hydrotreats and upgrades the heavy crude oil during production. In another embodiment, if the heavy crude oil does not contain water, the hydrogen may be formed in-situ by contacting the heavy crude oil downhole with a chemical compound comprising ammonia, hydrazine and formic acid that in the presence of a metal hydrogenation catalyst and sonic energy causes the chemical compound to react and form hydrogen which then hydrotreats the heavy crude oil during production. Suitable catalysts include nickel on zinc dust, platinum on carbon and palladium on carbon, preferably nickel on zinc dust. The hydrotreated and upgraded heavy crude oil has improved properties making it easier to refine and transport by pipeline. The upgrading includes reducing the amount of asphaltenes and resins in the heavy crude oil and increasing the amount of aromatics and saturates.