摘要:
A method of removing a metal nitride material is disclosed. The method comprises forming a semiconductor device structure comprising an exposed metal material and an exposed metal nitride material. The semiconductor device structure is subjected to a solution comprising water, ozone, and at least one additive to remove the exposed metal nitride material at a substantially greater rate than the exposed metal material. Resulting semiconductor device structures are also disclosed, as are compositions used to form the semiconductor device structures.
摘要:
A method of removing a metal nitride material is disclosed. The method comprises forming a semiconductor device structure comprising an exposed metal material and an exposed metal nitride material. The semiconductor device structure is subjected to a solution comprising water, ozone, and at least one additive to remove the exposed metal nitride material at a substantially greater rate than the exposed metal material.
摘要:
A method of removing a metal nitride material is disclosed. The method comprises forming a semiconductor device structure comprising an exposed metal material and an exposed metal nitride material. The semiconductor device structure is subjected to a solution comprising water, ozone, and at least one additive to remove the exposed metal nitride material at a substantially greater rate than the exposed metal material.
摘要:
A method of removing a metal nitride material is disclosed. The method comprises forming a semiconductor device structure comprising an exposed metal material and an exposed metal nitride material. The semiconductor device structure is subjected to a solution comprising water, ozone, and at least one additive to remove the exposed metal nitride material at a substantially greater rate than the exposed metal material. Resulting semiconductor device structures are also disclosed, as are compositions used to form the semiconductor device structures.
摘要:
Some embodiments include capacitors. The capacitors may include container-shaped storage node structures that have, along a cross-section, a pair of upwardly-extending sidewalls. Individual sidewalls may have a narrower segment over a wider segment. Capacitor dielectric material and capacitor electrode material may be along the narrower and wider segments of the sidewalls. Some embodiments include methods of forming capacitors in which an initial container-shaped storage node structure is formed to have a pair of upwardly-extending sidewalls along a cross-section, with the sidewalls being of thickness that is substantially constant or increasing from a base to a top of the initial structure. The initial structure is then converted into a modified storage node structure by reducing thicknesses of upper segments of the sidewalls while leaving thicknesses of lower segments of the sidewalls substantially unchanged. Capacitor dielectric material and capacitor electrode material are formed along the modified storage node structure.
摘要:
Some embodiments include capacitors. The capacitors may include container-shaped storage node structures that have, along a cross-section, a pair of upwardly-extending sidewalls. Individual sidewalls may have a narrower segment over a wider segment. Capacitor dielectric material and capacitor electrode material may be along the narrower and wider segments of the sidewalls. Some embodiments include methods of forming capacitors in which an initial container-shaped storage node structure is formed to have a pair of upwardly-extending sidewalls along a cross-section, with the sidewalls being of thickness that is substantially constant or increasing from a base to a top of the initial structure. The initial structure is then converted into a modified storage node structure by reducing thicknesses of upper segments of the sidewalls while leaving thicknesses of lower segments of the sidewalls substantially unchanged. Capacitor dielectric material and capacitor electrode material are formed along the modified storage node structure.
摘要:
A method for cleaning a semiconductor structure includes subjecting a semiconductor structure to an aqueous solution including at least one fluorine compound, and at least one strong acid, the aqueous solution having a pH of less than 1. In one embodiment, the aqueous solution includes water, hydrochloric acid, and hydrofluoric acid at a volumetric ratio of water to hydrochloric acid to hydrofluoric acid of 1000:32.5:1. The aqueous solution may be used to form a contact plug that has better contact resistance and improved critical dimension bias than conventional cleaning solutions.
摘要:
A method of creating a trench having a portion of a bulb-shaped cross-section in silicon is disclosed. The method comprises forming at least one trench in silicon and forming a liner in the at least one trench. The liner is removed from a bottom surface of the at least one trench to expose the underlying silicon. A portion of the underlying exposed silicon is removed to form a cavity in the silicon. At least one removal cycle is conducted to remove exposed silicon in the cavity to form a bulb-shaped cross-sectional profile, with each removal cycle comprising subjecting the silicon in the cavity to ozonated water to oxidize the silicon and subjecting the oxidized silicon to a hydrogen fluoride solution to remove the oxidized silicon. A semiconductor device structure comprising the at least one trench comprising a cavity with a bulb-shaped cross-sectional profile is also disclosed.
摘要:
Some embodiments include capacitors. The capacitors may include container-shaped storage node structures that have, along a cross-section, a pair of upwardly-extending sidewalls. Individual sidewalls may have a narrower segment over a wider segment. Capacitor dielectric material and capacitor electrode material may be along the narrower and wider segments of the sidewalls. Some embodiments include methods of forming capacitors in which an initial container-shaped storage node structure is formed to have a pair of upwardly-extending sidewalls along a cross-section, with the sidewalls being of thickness that is substantially constant or increasing from a base to a top of the initial structure. The initial structure is then converted into a modified storage node structure by reducing thicknesses of upper segments of the sidewalls while leaving thicknesses of lower segments of the sidewalls substantially unchanged. Capacitor dielectric material and capacitor electrode material are formed along the modified storage node structure.
摘要:
A method for cleaning a semiconductor structure includes subjecting a semiconductor structure to an aqueous solution including at least one fluorine compound, and at least one strong acid, the aqueous solution having a pH of less than 1. In one embodiment, the aqueous solution includes water, hydrochloric acid, and hydrofluoric acid at a volumetric ratio of water to hydrochloric acid to hydrofluoric acid of 1000:32.5:1. The aqueous solution may be used to form a contact plug that has better contact resistance and improved critical dimension bias than conventional cleaning solutions.