摘要:
If a shift to the 3rd speed is decided during the 5th-4th speed shift, in which the hydraulic servo for a second clutch is released by pressure regulation control, a changeover valve is switched by a solenoid valve so that the fluid pressure P.sub.C2 from the pressure regulating valve is conducted to a third clutch hydraulic servo. Thereby, the third clutch hydraulic servo pressure P.sub.C3 stands by at a predetermined engaging pressure P.sub.H and, at the same time, the servo-start of a fourth brake fluid pressure P.sub.B4 is performed by another pressure regulating valve. Meanwhile, the fluid pressure P.sub.C2 is released by an accumulator. After the servo-start ends and the 4th speed is established, the 4-3 speed shift control is performed, thus preventing shift shock and reducing shift duration.
摘要:
In a driven state, a hydraulic pressure of disengagement side is set at a stroke pressure, a one-way clutch in an operating state is over-run, an engine rotation speed is in an idle state, and an automatic transmission is in a neutral state. In a drive state, the hydraulic pressure of disengagement side is controlled so that a difference between an engine rotation speed and an input rotation speed reaches a difference between the both rotation speeds at a start of the shift control. In a state of a synchronized rotation after the shift, the hydraulic pressure of disengagement side is controlled so that the input rotation reaches the synchronized rotation.
摘要:
The automatic transmission of the present invention prevents fluctuation of torque transmission through a band brake. In the hydraulic operator for the band brake, a resilient elastic cushion is provided between a rod abutting one end of the band of the band brake and a piston. Any slippage between the band and drum of the band brake will result in oscillation of the rod. However, the elastic cushion absorbs oscillation of the rod, thereby isolating the piston from that oscillation.
摘要:
When a shift to a second gear ratio (second ratio) is determined during a shift control for a first shift (shift from fourth ratio to third ratio), the process status, or circumstances, of the first shift is determined using a hydraulic pressure for a fourth brake being engaged at the determination. When the process status, that is, the process circumstances, is in early phase, the first shift is interrupted and shift control for the direct shift to the second ratio (shift from fourth ratio to second ratio) is performed (first shift pattern). When the process status is in a late phase, the first shift control is continued, and after ending of the first shift control, the control for the shift to the second gear ratio (shift from third ratio to second ratio) is performed (second shift pattern). In the case of power off state, the second shift pattern is performed irrespective of the process status.
摘要:
A hydraulic servo includes a cylinder, a piston and a rod. The piston divides the interior space of the cylinder between a closed hydraulic chamber and a back chamber which has an opening to the interior space of an automatic transmission. The rod is slidably mounted in the piston for relative movement through a predetermined distance. A frictional engagement element is engaged by the rod which is extended from one end of the cylinder by applying a hydraulic pressure to the hydraulic chamber. A passage is provided between the piston and the rod which is opened or closed by the relative movement between the piston and rod so that the hydraulic chamber and the back chamber are connected or disconnected. A valving arrangement (“closer”) closes the passage at the end of the return stroke of the piston toward the hydraulic chamber.
摘要:
When a vehicle is halted with the transmission in a forward drive range, an input clutch is disengaged to enhance the fuel efficiency and, at the same times a hill-hold brake is engaged to prevent the vehicle from rolling backward on a steep up-slope. At that time, the hydraulic pressure P.sub.C-1 of the input clutch C1 is gradually reduced by .DELTA.P.sub.CIR (P.sub.C-1 =P.sub.C-1 -.DELTA.P.sub.CIR) while the hydraulic pressure P.sub.B-1 of the hill-hold brake B1 is increased gradually so as to satisfy an equation P.sub.B-1 =K1+K2 X e where .DELTA.P.sub.cir is a change in hydraulic pressure which is required for gradually disengaging the first clutch C1, K1 is a hill-hold brake pressure at which braking resistance begins, K2 is hill-hold brake pressure producing a fully braked condition, and e is the input/output rotational-speed ratio of a torque converter Subsequently during start of vehicle movement, the hydraulic pressure P.sub.C-1 of the input clutch C1 is gradually increased (P.sub.C-1 =p.sub.C-1 +.DELTA.P.sub.C-1A) while the hydraulic pressure P.sub.B-1 of the hill-hold brake B1 is gradually decreased (P.sub.B-1 ==P.sub.B-1-.DELTA.P.sub.B-1) until the ratio of the rotational speed N.sub.C-1 of the first clutch C1 becomes less than a rotational speed N.sub.C-1E corresponding to the clutch being almost engaged .DELTA.P.sub.C-1A and .DELTA.P.sub.B-1 are incremental values proportional to accelerator depression so that a delay in starting is reduced in accordance with driver demand.
摘要:
A control apparatus executes appropriate speed change control under any operating conditions encountered during an up-shift by change-over, without requiring an increase in control logic. Engagement side hydraulic pressure is swept up as a result of an arithmetic operation in torque phase speed change control. Disengagement side hydraulic pressure is calculated by initial speed change control, dependent on the engagement side hydraulic pressure. The engagement side hydraulic pressure is directly controlled and the disengagement side hydraulic pressure is indirectly controlled, i.e. responsive to the engagement side control. Consequently, the same control scheme can be executed regardless of power-on state or power-off state and regardless of vehicle operating conditions.
摘要:
When a vehicle driving state of an automatic transmission is changed to a power-off state from a power-on state during a down shift involving the disengagement of one friction element and the engagement of another friction element, a disengagement side pressure PA is reduced rapidly by a feedback control based on the change in gear ratio because of a reduction of an input torque. The disengagement side pressure control is unable to complete change of the gear ratio to complete the down shift. When the disengagement side pressure is reduced to a value less than a return spring load pressure PG or when the gear ratio change has not achieved a basic value in a predetermined time, the down shift control is changed from primary control by the disengagement side pressure control to primary control by an engagement side control so that the gear ratio change is completed by control of the engagement side pressure.
摘要:
In power-on, high-vehicle-speed and high-torque conditions, a control unit sets a torque allotment ratio such that a main clutch bears all the torque. Thereby, the input shaft rotational speed is increased by controlling solely the main clutch releasing pressure. In power-on and low-torque or low-vehicle-speed conditions, the control unit sets a torque allotment ratio for the main clutch torque and the sub-clutch torque to 1:1. Thereby, control of the main clutch releasing pressure and control of the sub-clutch engaging pressure simultaneously proceed in parallel to produce a change in the input shaft rotational speed without a time lag. The hydraulic control apparatus thus conducts proper downshift control for a shift involving clutch engagement changeover, under all vehicle running conditions, without need for additional control logic.
摘要:
In an automatic transmission including a gear unit with a second brake connected in series with a one-way clutch and a first brake that is not connected with a one-way clutch, the second brake and the first brake are controlled by linear solenoid valves individually. A vehicle load is detected, and when the vehicle is in a high load state, at first the second brake performs an engagement control, then after input rotation to the gear unit is synchronized with output rotation of the gear unit, the first brake performs an engagement control. When the vehicle is in a low load state, at first the first brake performs an engagement control, then after input rotation to the gear unit is synchronized with output rotation of the gear unit, the second brake performs an engagement control.