摘要:
A microlithographic projection exposure apparatus has a mirror array having a base body and a plurality of mirror units. Each mirror unit includes a mirror and a solid-state articulation, which has at least one articulation part that connects the mirror to the base body. A control device makes it possible to modify the alignment of the respective mirror relative to the base body. Mutually opposing surfaces of the mirror and of the base body, or of a mirror support body connected to it, are designed as corresponding glide surfaces of a sliding bearing.
摘要:
A microlithographic projection exposure apparatus has a mirror array having a base body and a plurality of mirror units. Each mirror unit includes a mirror and a solid-state articulation, which has at least one articulation part that connects the mirror to the base body. A control device makes it possible to modify the alignment of the respective mirror relative to the base body. Mutually opposing surfaces of the mirror and of the base body, or of a mirror support body connected to it, are designed as corresponding glide surfaces of a sliding bearing.
摘要:
A mirror serves for guiding a radiation bundle. The mirror has a basic body and a coating of a reflective surface of the basic body, the coating increasing the reflectivity of the mirror. A heat dissipating device serves for dissipating heat deposited in the coating. The heat dissipating device has at least one Peltier element. The coating is applied directly on the Peltier element. A temperature setting apparatus has at least one temperature sensor for a temperature of the reflective surface. A regulating device of the Temperature setting apparatus can be connected to the at least one Peltier element and is signal-connected to the at least one temperature sensor. The result is a mirror in which a heat dissipating capacity of the heat dissipating device is improved.
摘要:
An illumination system of a microlithographic projection exposure apparatus includes a primary light source, a system pupil surface and a mirror array. The mirror array is arranged between the primary light source and the system pupil surface. The mirror array includes a plurality of adaptive mirror elements. Each mirror element includes a mirror support and a reflective coating. Each mirror element is configured to direct light produced by the primary light source towards the system pupil surface. The mirror elements can be tiltably mounted with respect to a support structure. The mirror elements include structures having a different coefficient of thermal expansion and being fixedly attached to one another. A temperature control device is configured to variably modify the temperature distribution within the structures to change the shape of the mirror elements.
摘要:
A mirror serves for guiding a radiation bundle. The mirror has a basic body and a coating of a reflective surface of the basic body, the coating increasing the reflectivity of the mirror. A heat dissipating device serves for dissipating heat deposited in the coating. The heat dissipating device has at least one Peltier element. The coating is applied directly on the Peltier element. A temperature setting apparatus has at least one temperature sensor for a temperature of the reflective surface. A regulating device of the Temperature setting apparatus can be connected to the at least one Peltier element and is signal-connected to the at least one temperature sensor. The result is a mirror in which a heat dissipating capacity of the heat dissipating device is improved.
摘要:
An illumination system of a microlithographic projection exposure apparatus includes a primary light source, a system pupil surface and a mirror array. The mirror array is arranged between the primary light source and the system pupil surface. The mirror array includes a plurality of adaptive mirror elements. Each mirror element includes a mirror support and a reflective coating. Each mirror element is configured to direct light produced by the primary light source towards the system pupil surface. The mirror elements can be tiltably mounted with respect to a support structure. The mirror elements include structures having a different coefficient of thermal expansion and being fixedly attached to one another. A temperature control device is configured to variably modify the temperature distribution within the structures to change the shape of the mirror elements.
摘要:
An illumination optics for EUV microlithography guides an illumination light bundle from a radiation source to an object field with an extension ratio between a longer field dimension and a shorter field dimension, where the ratio is considerably greater than 1. A field facet mirror has a plurality of field facets that set defined illumination conditions in the object field. A following optics downstream of the field facet mirror transmits the illumination light into the object field. The following optics includes a pupil facet mirror with a plurality of pupil facets. The field facets are in each case individually allocated to the pupil facets so that portions of the illumination light bundle impinging upon in each case one of the field facets are guided on to the object field via the associated pupil facet. The field facet mirror not only includes a plurality of basic illumination field facets which provide a basic illumination of the object field via associated basic illumination pupil facets, but also includes a plurality of correction illumination field facets which provide for a correction of the illumination of the object field via associated correction illumination pupil facets. The result is an illumination optics which allows unwanted variations of illumination parameters, for instance an illumination intensity distribution or an illumination angle distribution, to be corrected across the object field.
摘要:
An optical module is used to guide an EUV radiation beam. The optical module has a chamber that can be evacuated and at least one mirror accommodated in the chamber. The mirror has a plurality of individual mirrors, the reflection faces of which complement one another to form an overall mirror reflection face. A support structure is in each case mechanically connected via a thermally conductive portion to a mirror body of the respective individual mirror. At least some of the mirror bodies have an associated actuator for the predetermined displacement of the mirror body relative to the support structure in at least one degree of freedom. The thermally conductive portions are configured to dissipate a thermal power density of at least 1 kW/m2 absorbed by the mirror bodies to the support structure. In one aspect of the optical module, an integrated electronic displacement circuit is associated with each of the displaceable individual mirrors in spatial proximity, and a central control device has a signal connection with the integrated electronic displacement circuits of the displaceable individual mirrors. The result is an optical module, with which an illumination optical system can be constructed, which, even with a non-negligible thermal load on the individual mirrors, ensures a high EUV radiation throughput.
摘要:
Illumination optics for EUV microlithography guide an illumination light bundle from a radiation source to an object field with an extension ratio between a longer field dimension and a shorter field dimension, where the ratio is considerably greater than 1.