摘要:
In a layer structure oxide in crystallite form having a composition of the formula: AMO.sub.2 wherein A is Li or Na and M is Co, Ni, Fe or Cr, at least one additive element Z which is Bi, Pb or B is present in the form of an oxide on the surface of crystallites or between crystallites. Atomic ratio Z/M is from 0.0001 to 0.1. Since the crystallites have an increased size, the layer structure oxide has improved properties and is suitable for use as a positive electrode material of a secondary cell.
摘要:
A lithium-ion secondary battery device comprises a positive electrode collector having a surface formed with a positive electrode active material layer containing a positive electrode active material; a negative electrode collector having a surface formed with a negative electrode active material layer containing a negative electrode active material; an electrically insulating porous separator; and an electrolyte containing a lithium salt and being in contact with the positive electrode active material layer, negative electrode active material layer, and separator. The negative electrode active material is a carbon material having a graphite structure. The amount of the carbon material supported by the negative electrode active material layer is 2.0 to 4.0 mg/cm2. The graphite structure in an X-ray diffraction pattern of the carbon material exhibits a peak intensity P101 of (101) plane and a peak intensity P100 of (100) plane having a ratio (P101/P100) of 2.0 to 2.8 therebetween.
摘要:
A polishing pad of excellent durability has a polishing layer is arranged on a base material layer, and the polishing layer comprises a thermosetting polyurethane foam having roughly spherical interconnected cells with an average cell diameter of 35 to 300 μm.
摘要:
A lithium secondary battery comprising positive and negative electrodes both capable of occluding and releasing lithium ions, and a lithium ion conductive material which contains a compound of formula (1) exhibits improved characteristics including charge/discharge efficiency, low-temperature properties and cycle performance when (a) only one substituent group of R1, R2, R3 and R4 in formula (1) is alkyl, (b) the negative electrode-constituting material partially contains a carboxyl or hydroxyl group-bearing compound, and the lithium ion conductive material contains propylene carbonate, or (c) a positive electrode active material is a lithium-containing transition metal compound, a negative electrode active material is a carbonaceous material, and the lithium ion conductive material contains as a non-aqueous electrolysis solution a solvent mixture of propylene carbonate and ethylene carbonate in combination with a chain-like carbonate as a low-viscosity solvent
摘要:
A method for inexpensively and easily manufacturing a polishing pad of excellent durability and polishing speed stability includes preparing a cell dispersed urethane composition by mechanical foaming, applying the cell dispersed urethane composition onto a base material layer, forming a polyurethane foamed layer having roughly spherical interconnected cells by curing the cell dispersed urethane composition, and regulating the thickness of the polyurethane foamed layer uniformly.
摘要:
A cathode, an anode and a porous film are first provided. Then, the cathode and anode are aligned with the porous film and a part of the cathode and a part of the anode are fixed to said porous film. Then, the cathode, anode and porous film are immersed in a liquid electrolyte. Finally, the cathode and anode are integrated with the porous film by compression. With this process, it is possible to produce a thin and lightweight polymer secondary battery or other secondary batteries with ease yet at low cost.
摘要:
The present invention provides a manufacturing method for an impeller with which molding and high-quality finishing can be performed extremely easily and quickly through resin molding using a die, and an impeller manufactured by the impeller manufacturing method. A metallic bush is disposed in a die, whereupon a resin material is injected through a gate in the die. A connecting portion between an unnecessary resin portion formed from residual resin material in the gate and a resin impeller main body molded around the bush is formed to be thin, and the unnecessary resin portion is removed from the impeller main body using pushing or withdrawing means.
摘要:
The electrode carbon material of the present invention is an electrode carbon material to become a constituent material for an electrode of a nonaqueous electrolyte battery, wherein the electrode carbon material is formed by way of a plasma processing step of subjecting a material composition to high-frequency thermal plasma processing in a plasma gas atmosphere including a sulfur-containing compound.
摘要:
The coating liquid for forming an electrode in accordance with the present invention includes, as constituents, a granulated particle containing an electrode active material, a conductive auxiliary agent having an electronic conductivity, and a binder capable of binding the electrode active material and conductive auxiliary agent to each other; and a liquid adapted to disperse or dissolve the granulated particle, whereas the granulated particle is formed by way of a granulating step of preparing a material liquid containing the binder, the conductive auxiliary agent, and a solvent, and then attaching the material liquid to a surface of a particle made of the electrode active material and bringing a particle made of the binder and a particle made of the conductive auxiliary agent into close contact with the surface. An electrode is formed by using the coating liquid for forming an electrode, whereas an electrochemical device is equipped with the electrode.
摘要:
A lithium-ion secondary battery comprises a positive electrode collector having a surface provided with a positive electrode active material layer containing a positive electrode active material; a negative electrode collector having a surface provided with a negative electrode active material layer containing a negative electrode active material; an electrically insulating porous separator; and an electrolytic solution containing a lithium salt and infiltrating the separator. The negative electrode active material layer carries 2.0 to 6.0 mg/cm2 of the negative electrode active material. The separator has a porosity of 45% to 90% and a Gurley air permeance of less than 200 s/100 cm3.