Abstract:
A method for producing ultra-thin glass sheets is provided that results in glass sheets with high edge strength. The method includes: hot forming a continuous glass ribbon with a glass thickness from molten glass; annealing the glass ribbon with an annealing rate chosen based on the glass thickness; producing a laser beam focus area that is longer than the glass thickness; introducing filamentary defects into the glass ribbon using the laser beam so that the filamentary defects extend from one face to the opposite face and are spaced apart from one another along the breaking lines to produce transverse breaking lines and longitudinal breaking lines with margins each comprising a thickened bead; separating the beads along the longitudinal breaking lines and separating glass sheets by severing along the transverse breaking lines.
Abstract:
An apparatus and a method for producing glass products from a glass melt, avoiding bubble formation, are disclosed, wherein the apparatus includes a crucible and an internally component for processing the glass melt, and wherein, for heating the glass melt, the apparatus comprises an AC generator which energizes the crucible or stirring crucible via electrical connection elements. The component or stirring system is connected via a current-limiting choke having a variable impedance with the power supply elements. The impedance of the current-limiting choke is adjusted so that a AC density existing in the glass melt lies between a lower limit value and an upper limit value. By means of a choke and by adjusting the impedance it can be achieved that the AC load of the system can be minimized and that simultaneously the water decomposition reaction at the precious metal surfaces can positively be influenced.
Abstract:
A method for producing ultra-thin glass sheets is provided that results in glass sheets with high edge strength. The method includes: hot forming a continuous glass ribbon with a glass thickness from molten glass; annealing the glass ribbon with an annealing rate chosen based on the glass thickness; producing a laser beam focus area that is longer than the glass thickness; introducing filamentary defects into the glass ribbon using the laser beam so that the filamentary defects extend from one face to the opposite face and are spaced apart from one another along the breaking lines to produce transverse breaking lines and longitudinal breaking lines with margins each comprising a thickened bead; separating the beads along the longitudinal breaking lines and separating glass sheets by severing along the transverse breaking lines.
Abstract:
A method for producing a glass product having a low bubble content from a melt is provided, wherein the melt at least partly comes into contact with a noble metal-comprising component.
Abstract:
An additive for electrochemical energy storages is disclosed, wherein the additive contains at least one silicon- and alkaline earth metal-containing compound V1 which in contact with a fluorine-containing compound V2 in the energy storage forms at least one compound V3 selected from the group consisting of silicon- and fluorine-containing, lithium-free compounds V3a, alkaline earth metal- and fluorine-containing, lithium-free compounds V3b, silicon-, alkaline earth metal- and fluorine-containing, lithium-free compounds V3c and combinations thereof. Also disclosed is an electrochemical energy storage containing the additive.
Abstract:
A method for producing a glass product, preferably a sheet-like glass product, is provided that includes conveying a molten silicate glass through a conduit system from one area of a glass product producing installation to another area of the glass product producing installation. The conduit system includes noble metal and is configured to conduct an electric current through the noble metal so as to generates Joule heat in the conduit system. The current is an alternating current for which the time integral over a positive and a negative half-wave results in a zero value.
Abstract:
An additive for electrochemical energy storages is disclosed, wherein the additive contains at least one silicon- and alkaline earth metal-containing compound V1 which in contact with a fluorine-containing compound V2 in the energy storage forms at least one compound V3 selected from the group consisting of silicon- and fluorine-containing, lithium-free compounds V3a, alkaline earth metal- and fluorine-containing, lithium-free compounds V3b, silicon-, alkaline earth metal- and fluorine-containing, lithium-free compounds V3c and combinations thereof. Also disclosed is an electrochemical energy storage containing the additive.
Abstract:
A method for producing ultra-thin glass sheets is provided that results in glass sheets with high edge strength. The method includes: hot forming a continuous glass ribbon with a glass thickness from molten glass; annealing the glass ribbon with an annealing rate chosen based on the glass thickness; producing a laser beam focus area that is longer than the glass thickness; introducing filamentary defects into the glass ribbon using the laser beam so that the filamentary defects extend from one face to the opposite face and are spaced apart from one another along the breaking lines to produce transverse breaking lines and longitudinal breaking lines with margins each comprising a thickened bead; separating the beads along the longitudinal breaking lines and separating glass sheets by severing along the transverse breaking lines.
Abstract:
A method of making glass products includes: heating material to obtain a glass melt; heating the glass melt in a melting tank having a melting tank bottom, the glass melt having a melt volume, a melt surface, and a viscosity of 102 dPas at a temperature above 1580° C. The glass melt is heated such that at least some of the glass melt has a viscosity of 102.5 dPas or less. An amount of thermal energy introduced directly into the melt volume is more than 60% of a total amount of thermal energy introduced into the glass melt. A maximum difference between a temperature at a location on the melt surface and a temperature at a location at the melting tank bottom vertically underneath the location on the melt surface is such that a difference in glass melt densities is less than 0.05 g/cm3 per meter distance between the locations.
Abstract:
A glass article is composed of an aluminosilicate glass with at least one halogen with refining action in an amount ranging from 500 ppm to 8000 ppm and an Sn content of less than 500 ppm. The glass has less than 100 ppm As and less than 100 ppm Sb and the glass article has a thickness of less than 250 μm.