Abstract:
Systems and methods to disconnect a faulted region of a power grid are described. For example, a control system may obtain a set of regions of a power grid. The control system may obtain a current magnitude and a voltage magnitude of the power grid. The control system may detect a fault in the power grid based at least in part on the current magnitude. The control system may, from the set of regions, determine a faulted region that the fault is located within based on a voltage magnitude of one or more buses in the power grid, a net change in power with respect to time of one or more regions in the set of regions, or both. The control system may send one or more signals to electrically disconnect the faulted region from the power grid.
Abstract:
Primary protection relays and an integrator disclosed for providing primary protection and secondary applications for an electric power delivery system. The primary protection relays obtain signals from, and provide primary protection operations for the power system, and may operate independently from the integrator. An integrator receives signals and status communications from the primary protection relays to perform secondary applications for the electric power delivery system. The secondary applications may include backup protection, system protection, interconnected protection, and automation functions.
Abstract:
Systems and methods to test an electric power delivery system include a communication subsystem to transmit test signals to one or more merging units, a test subsystem to transmit a test data stream to the one or more merging units via the communication subsystem, and a processor subsystem to receive looped back data from the one or more merging unit in response to the transmitted test data stream and to determine an operating condition based on the looped back data.
Abstract:
Systems and methods testing a power protection relay include a merging unit to receive signals from an electric power delivery system. The merging unit includes a test signal input to receive test signals from a testing device, a relay output to output at least one of the test signals to a power protection relay, a distribution output to output at least another of the test signals to one or more additional merging units, and a switch subsystem to route the test signal to the relay output or the distribution output.
Abstract:
Systems and methods for facilitating selected communications among primary protection relays using a supervisory system with a configurable input/output (IO) map. Primary protection relays may obtain signals from equipment associated with an electric power delivery system and provide primary protection without need for communication. The primary protection relays may communicate a unique identifier as well as signal values, states, and commands to the supervisory system. The supervisory system may route specifically identified communications among primary protection relays in accordance with a configurable IO map by transmitting selected portions of the communications on a port associated with the receiving primary protection relay. The primary protection relays may perform secondary protection and other operations using the communicated information.
Abstract:
Systems and methods may maintain protection of electric power delivery systems in the event of an attack on protection and/or control features of the power system. Primary protective functions may be physically isolated from other functions in primary protection relays. Integrators may facilitate non-primary protection functions and disconnect all communication with primary protection relays in the event of an attack. Primary protection relays maintain protection functions even during the attack or unavailability of the integrators.
Abstract:
The present application discloses systems and methods to determine loss of at least one electric power transmission line in an electric power transmission system. In various embodiments, a system consistent with the present disclosure may include an electrical parameter monitoring subsystem configured to receive electrical parameter measurements and to determine a change of the electrical measurements. An analysis subsystem may determine whether a change in the electrical measurements is indicative of loss of at least one transmission line and may calculate a number of transmission lines lost based on the change. In some embodiments, a remedial action subsystem may be configured to implement a remedial action in response to loss of at least one transmission line. The number of transmission lines lost may be determined based on an angle difference ratio and a power ratio between two buses in electrical transmission system.
Abstract:
Disclosed herein are methods for detecting and correcting a fault induced delayed voltage recovery event in an electric power transmission and distribution system. In some embodiments, a fault detection subsystem may receive an indication of a fault in the electric power transmission and distribution system. The system may also include a load analysis subsystem to analyze a plurality of loads supplied by the electric power system and to generate an estimated response of the loads. A fault analysis subsystem may analyze a plurality of factors relating to the fault and to determine a probability of the fault generating a fault induced delayed voltage recovery event. A control system may then implement a control strategy within a control window following the fault based on the probability of the fault generating a fault induced delayed voltage recovery event and the estimated response of the at least one load.
Abstract:
The present application discloses systems and methods to determine loss of at least one electric power transmission line in an electric power transmission system. In various embodiments, a system consistent with the present disclosure may include an electrical parameter monitoring subsystem configured to receive electrical parameter measurements and to determine a change of the electrical measurements. An analysis subsystem may determine whether a change in the electrical measurements is indicative of loss of at least one transmission line and may calculate a number of transmission lines lost based on the change. In some embodiments, a remedial action subsystem may be configured to implement a remedial action in response to loss of at least one transmission line. The number of transmission lines lost may be determined based on an angle difference ratio and a power ratio between two buses in electrical transmission system.
Abstract:
The present disclosure pertains to systems and methods for monitoring electrical arc events in an electric power system. In one embodiment, a system may comprise an arc flash detection (AFD) unit to detect electromagnetic radiation generated by an electrical arc event, a primary protection relay to generate measurements of an electric current, and an integrator. In various embodiments, the integrator may comprise a communication port to receive the detection of the electrical arc event and the measurements of the electric current. The integrator may also comprise a processing subsystem to validate the detection of the electrical arc and generate protective actions to interrupt the flow of the current to the electrical arc event.