Abstract:
The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.
Abstract:
The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.
Abstract:
A sensor assembly. A sensor assembly 34 that has a sensing element 26 is mountable in a housing 5. The housing has an inner surface 12, an outer surface 14, a bore 16 disposed there through and further has a sensed object 24 positioned across a gap from the sensing element 26. The sensor assembly 34 comprises a sensor body 35 having a first portion 36 and a second portion 38, the first portion 36 and the second portion 38 being positioned within the bore 16. The second portion 38 positions the sensing element 26 at an end of the second portion 38. The sensor assembly 34 further comprises an anti-corrosion member 56 positioned within the bore 16. Additionally, the sensor assembly 34 comprises a retaining member 58 removably fastened to the first portion 36 wherein the retaining member 58 such that the anti-corrosion member 56 isolates the sensing element 26 from the outer surface 14 to prevent contaminants from contacting the sensing element 26.
Abstract:
A rear tactical sight for a handgun having a barrel with a barrel axis. The sight including a base extending in a longitudinal direction parallel to the barrel axis. The base having a front and an oppositely facing back with sides extending in the longitudinal direction between the front, the back and a bottom. The sight further including an upwardly opened notch joined to the base and spaced above the base bottom which at least partially defines boundaries of a sight line for the sight and a pair of side walls spaced on either side of the sight line each having outer surfaces that are opposite to one another and which extend upwardly from the base sides. The outer surfaces being substantially symmetrical to one another and each including a first arcuate surface extending upwardly and inwardly from a corresponding one of the base sides respectively and a second arcuate surface extending inwardly and upwardly from the first surface.
Abstract:
Systems and methods for positioning a multi-featured biological array relative to a signal acquisition device. Detection of the array's positional deviation may be achieved by a calibration beam reflected from the array surface and detected by a position sensitive detector (PSD). The PSD-measured positional deviation can be transformed and used in a control loop to correct for positional variations of the array. The calibration beam and PSD may also be used to detect the array or feature boundaries, thereby allowing lateral centering or positioning of the array relative to the signal acquisition device.
Abstract:
A method is disclosed for performing GC separations using a separation protocol including at least one negative temperature ramp, where the negative temperature ramp is controlled either by the introduction of a gaseous coolant at a controlled and adjustable rate or by the introduction of the coolant along with the application of microwave radiation to a column capable of absorbing microwave radiation, where the rate of coolant introduction or the rate of coolant introduction and radiation introduction is sufficient to achieve a desired rate of cooling.
Abstract:
Systems and methods for positioning a camera target relative to a signal acquisition frame. Detection of the target's position deviation may be achieved by a calibration beam being reflected from the target surface and being detected by at least two position sensitive detectors (PSDs) to thereby allow removal of ambiguity in the target's Z-focus error from its tilt error. The PSD-measured quantities can be transformed into target control space quantities that can be used in a control loop to reduce the target position error. The calibration beam and one or more of the PSDs can also be used to detect the target's edges, thereby allowing lateral centering of the target relative to the reference frame.