摘要:
Vapor depositions sources, systems, and related deposition methods. Vapor deposition sources for use with materials that evaporate or sublime in a difficult to control or otherwise unstable manner are provided. The present invention is particularly applicable to deposition of organic material such as those for forming one or more layer in organic light emitting devices.
摘要:
The present invention provides deposition sources that can efficiently and controllably provide vaporized material for deposition of thin film materials. Deposition sources described herein can be used to deposit any desired material and are particularly useful for depositing high melting point materials at high evaporation rates. An exemplary application for deposition sources of the present invention is deposition of copper, indium, and gallium in the manufacture of copper indium gallium diselenide based photovoltaic devices.
摘要:
The present invention provides deposition sources, systems, and related methods that can efficiently and controllably provide vaporized material for deposition of thin-film materials. The deposition sources, systems and related methods described herein can be used to deposit any desired material and are particularly useful for depositing high vapor pressure materials such as selenium in the manufacture of copper indium gallium diselenide based photovoltaic devices.
摘要:
The present invention provides deposition sources that can efficiently and controllably provide vaporized material for deposition of thin film materials. Deposition sources described herein can be used to deposit any desired material and are particularly useful for depositing high melting point materials at high evaporation rates. An exemplary application for deposition sources of the present invention is deposition of copper, indium, and gallium in the manufacture of copper indium gallium diselenide based photovoltaic devices.
摘要:
A deposition source includes a plurality of crucibles that each contains a deposition material. A heat shield provides at least partial thermal isolation for at least one of the plurality of crucibles. A body is included with a plurality of conductance channels. An input of each of the plurality of conductance channels is coupled to an output of a respective one of the plurality of crucibles. A heater increases a temperature of the plurality of crucibles so that each crucible evaporates the deposition material into the plurality of conductance channels. An input of each of a plurality of nozzles is coupled to an output of one of the plurality of conductance channels. Evaporated deposition materials are transported from the crucibles through the conductance channels to the nozzles where the evaporated deposition material is ejected from the plurality of nozzles to form a deposition flux.
摘要:
A deposition source includes at least one crucible for containing deposition material. A body includes a conductance channel with an input coupled to an output of the crucible. A heater increases a temperature of the crucible so that the crucible evaporates the deposition material into the conductance channel. A plurality of nozzles is coupled to an output of the conductance channel so that evaporated deposition material is transported from the crucible through the conductance channel to the plurality of nozzles where the evaporated deposition material is ejected from the plurality of nozzles to form a deposition flux. At least one of the plurality of nozzles includes a tube that is positioned proximate to the conductance channel so that the tube restricts an amount of deposition material supplied to the nozzle including the tube.
摘要:
Vapor depositions sources, systems, and related deposition methods. Vapor deposition sources for use with materials that evaporate or sublime in a difficult to control or otherwise unstable manner are provided. The present invention is particularly applicable to deposition of organic material such as those for forming one or more layer in organic light emitting devices.
摘要:
The present invention relates to vacuum depositions systems and related deposition methods. Vacuum deposition systems that use one or more cyropanels for localized pumping of a deposition region where a substrate is positioned are provided. The present invention is particularly applicable to pumping and minimizing reevaporation of high vapor pressure deposition materials during molecular beam epitaxy.
摘要:
An integrated phase separator for use in an ultra high vacuum system, for example, a molecular beam epitaxy system, is described. The vacuum chamber has a cryogenic panel disposed therein. The cryogenic panel includes a cryogenic shroud region and a phase separator region. Liquid nitrogen is introduced into the cryogenic panel via an inlet line. As the liquid nitrogen warms and vaporizes, nitrogen vapor rises within the shroud. The phase separator region within the cryogenic panel provides a near atmospheric pressure vapor barrier over the liquid nitrogen so that the nitrogen vapor may escape smoothly through the outlet of the panel, without forming gas bursts. Also, the phase separator region is vacuum jacketed to prevent cryogenic shroud surface temperature changes due to variations in liquid nitrogen levels, thereby increasing the cryogenic shroud's pumping stability. In one embodiment, used in molecular beam epitaxy (MBE), the cryopanel is divided into first and second cooling chambers. The first cooling chamber contains liquid nitrogen and surrounds the substrates to be coated, while the second cooling chamber contains a different fluid such as water, and surrounds the effusion cells so as to dissipate heat generated during the operation of effusion cells.
摘要:
The present invention provides electrical contact assemblies can be used with vacuum deposition sources. In one exemplary application, the electrical contact assemblies of the present invention provide electrical contact to an arcuate or otherwise curved surface of a heating device used with a vacuum deposition source. In one embodiment, a set of power straps are each connected at one end to a power source feed-through wire and at the other end are urged by a pressure pin and a flat spring into electrical communication with one of the electrical contacts on the heating device.