Abstract:
A data storage device comprising a recording head having a high damping magnetic alloy layer including at least one magnetic alloy element, and a 5d transition element; the high damping magnetic alloy layer having a mixed face-centered cubic (fcc) and body-centered cubic (bcc) crystal structure, and the mixed fcc and bcc crystal structure comprising fcc and bcc grains, with the bcc grains having an elongated shape relative to the fcc grains, a larger size than the fcc grains, and slip deformation, thereby providing the high damping magnetic alloy layer with a damping constant of up to about 0.07.
Abstract:
A recording head has a near-field transducer proximate a media-facing surface of the recording head. A waveguide overlaps and delivers light to the near-field transducer. Two subwavelength focusing mirrors are at an end of the waveguide proximate the media-facing surface. The subwavelength mirrors are on opposite crosstrack sides of the near-field transducer and separated from each other by a crosstrack gap. The subwavelength focusing mirrors each include a core having a first edge exposed at the media-facing surface. The core formed of a core material that is resistant to mechanical wear and corrosion, such as a dielectric or robust metal. A liner covers a second edge of the core facing the near-field transducer. The liner includes a plasmonic metal that is different than the core material, such as Au or Al.
Abstract:
A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
Abstract:
Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
Abstract:
Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
Abstract:
A magnetic device including a magnetic writer; and an overcoat positioned over at least the magnetic writer, the overcoat including oxides of yttrium, oxides of scandium, oxides of lanthanoids, oxides of actionoids, oxides of zinc, or combinations thereof.
Abstract:
Methods of forming a NFT the methods including forming a hard mask positioned over at least a portion of the rod, the hard mask including at least one layer; patterning a resist mask over the hard mask, the resist mask having an edge positioned over at least a portion of the rod; etching a portion of the hard mask to expose a back edge of the rod and to form a back edge of the hard mask, wherein the back edge of the rod is equivalent to the back edge of the peg; and wherein a forward portion of the rod which is the portion of the rod forward of the back edge is covered by the hard mask; forming a disc mask including a void configured to form a disc of a NFT, the disc mask being formed over at least a portion of the hard mask so that the exposed back edge of the rod is within the void configured to form the disc; etching an area exposed in the void of the disc mask to remove both a rear portion of the rod and the surrounding dielectric up to the back edge of the hard mask edge; depositing a disc material in the etched void, wherein the back edge of the hard mask defines the front edge of the disc and the back edge of the rod is in contact with the front edge of the disc; and polishing the deposited disc material to form a top surface substantially planar with the top of the forward rod portion.
Abstract:
Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: yttrium (Y), tin (Sn), iron (Fe), copper (Cu), carbon (C), holmium (Ho), gallium (Ga), silver (Ag), ytterbium (Yb), chromium (Cr), tantalum (Ta), iridium (Ir), zirconium (Zr), yttrium (Y), scandium (Sc), cobalt (Co), silicon (Si), nickel (Ni), molybdenum (Mo), niobium (Nb), palladium (Pd), titanium (Ti), rhenium (Re), osmium (Os), platinum (Pt), aluminum (Al), ruthenium (Ru), rhodium (Rh), vanadium (V), germanium (Ge), tin (Sn), magnesium (Mg), iron (Fe), copper (Cu), tungsten (W), hafnium (Hf), carbon (C), boron (B), holmium (Ho), antimony (Sb), gallium (Ga), manganese (Mn), silver (Ag), indium (In), bismuth (Bi), zinc (Zn), ytterbium (Yb), and combinations thereof.
Abstract:
Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having an air bearing surface; and at least one adhesion layer positioned on the air bearing surface of the peg, the adhesion layer including one or more of the following: tungsten (W), molybdenum (Mo), chromium (Cr), silicon (Si), nickel (Ni), tantalum (Ta), titanium (Ti), yttrium (Y), vanadium (V), magnesium (Mg), cobalt (Co), tin (Sn), niobium (Nb), hafnium (Hf), and combinations thereof; tantalum oxide, titanium oxide, tin oxide, indium oxide, and combinations thereof; vanadium carbide (VC), tungsten carbide (WC), titanium carbide (TiC), chromium carbide (CrC), cobalt carbide (CoC), nickel carbide (NiC), yttrium carbide (YC), molybdenum carbide (MoC), and combinations thereof and titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), and combinations thereof.
Abstract:
Disclosed herein is an apparatus that includes a near field transducer positioned adjacent to an air bearing surface of the apparatus; a first magnetic pole; and a heat sink positioned between the first magnetic pole and the near field transducer, wherein the heat sink includes a first and second portion, with the first portion being adjacent the near field transducer and the second portion being adjacent the first magnetic pole, the first portion including a plasmonic material, and the second portion including a diffusion blocking material.