摘要:
A non-volatile memory device includes an upwardly protruding fin disposed on a substrate and a control gate electrode crossing the fin. A floating gate is interposed between the control gate electrode and the fin and includes a first storage gate and a second storage gate. The first storage gate is disposed on a sidewall of the fin, and the second storage gate is disposed on a top surface of the fin and is connected to the first storage gate. A first insulation layer is interposed between the first storage gate and the sidewall of the fin, and a second insulation layer is interposed between the second storage gate and the top surface of the fin. The second insulation layer is thinner than the first insulation layer. A blocking insulation pattern is interposed between the control gate electrode and the floating gate.
摘要:
A non-volatile memory device includes an upwardly protruding fin disposed on a substrate and a control gate electrode crossing the fin. A floating gate is interposed between the control gate electrode and the fin and includes a first storage gate and a second storage gate. The first storage gate is disposed on a sidewall of the fin, and the second storage gate is disposed on a top surface of the fin and is connected to the first storage gate. A first insulation layer is interposed between the first storage gate and the sidewall of the fin, and a second insulation layer is interposed between the second storage gate and the top surface of the fin. The second insulation layer is thinner than the first insulation layer. A blocking insulation pattern is interposed between the control gate electrode and the floating gate.
摘要:
A non-volatile memory device includes an upwardly protruding fin disposed on a substrate and a control gate electrode crossing the fin. A floating gate is interposed between the control gate electrode and the fin and includes a first storage gate and a second storage gate. The first storage gate is disposed on a sidewall of the fin, and the second storage gate is disposed on a top surface of the fin and is connected to the first storage gate. A first insulation layer is interposed between the first storage gate and the sidewall of the fin, and a second insulation layer is interposed between the second storage gate and the top surface of the fin. The second insulation layer is thinner than the first insulation layer. A blocking insulation pattern is interposed between the control gate electrode and the floating gate.
摘要:
A non-volatile memory device includes an upwardly protruding fin disposed on a substrate and a control gate electrode crossing the fin. A floating gate is interposed between the control gate electrode and the fin and includes a first storage gate and a second storage gate. The first storage gate is disposed on a sidewall of the fin, and the second storage gate is disposed on a top surface of the fin and is connected to the first storage gate. A first insulation layer is interposed between the first storage gate and the sidewall of the fin, and a second insulation layer is interposed between the second storage gate and the top surface of the fin. The second insulation layer is thinner than the first insulation layer. A blocking insulation pattern is interposed between the control gate electrode and the floating gate.
摘要:
A flash memory device according to the present invention includes a semiconductor fin including a top surface and a side surface originated from different crystal planes. The flash memory device comprises: insulating layers having different thicknesses formed on a side surface and a top surface of the semiconductor fin, a storage electrode, a gate insulating layer and a control gate electrode sequentially formed on the insulating layers. A thin insulating layer enables charges to be injected or emitted through it, and a thick insulating layer increases a coupling ratio. Accordingly, it is possible to increase an efficiency of a programming or an erase operation of a flash memory device.
摘要:
A flash memory device according to the present invention includes a semiconductor fin including a top surface and a side surface originated from different crystal planes. The flash memory device comprises: insulating layers having different thicknesses formed on a side surface and a top surface of the semiconductor fin, a storage electrode, a gate insulating layer and a control gate electrode sequentially formed on the insulating layers. A thin insulating layer enables charges to be injected or emitted through it, and a thick insulating layer increases a coupling ratio. Accordingly, it is possible to increase an efficiency of a programming or an erase operation of a flash memory device.
摘要:
Provided is an EEPROM device and a method of manufacturing the same. The EEPROM device is composed of one cell including a memory transistor and a selection transistor located in series on a semiconductor substrate, and includes a source region located on a side region of a memory transistor, a drain region located on one side region of the selection transistor facing the source region, and a floating junction region formed between the memory transistor and the selection transistor, wherein the floating junction region includes a first doped region extended toward the source region under a region occupied by the memory transistor and a second doped region doped with the opposite conductive dopant to the first doped region and formed to surround the first doped region.
摘要:
Provided is an EEPROM device and a method of manufacturing the same. The EEPROM device is composed of one cell including a memory transistor and a selection transistor located in series on a semiconductor substrate, and includes a source region located on a side region of a memory transistor, a drain region located on one side region of the selection transistor facing the source region, and a floating junction region formed between the memory transistor and the selection transistor, wherein the floating junction region includes a first doped region extended toward the source region under a region occupied by the memory transistor and a second doped region doped with the opposite conductive dopant to the first doped region and formed to surround the first doped region.
摘要:
In a method for forming a semiconductor device and a semiconductor device formed in accordance with the method, a thin dielectric layer is provided between a lower conductive layer and an upper conductive layer. In one embodiment, the thin dielectric layer comprises an inter-gate dielectric layer, the lower conductive layer comprises a floating gate and the upper dielectric layer comprises a control gate of a transistor, for example, a non-volatile memory cell transistor. The thin dielectric layer is formed using a heat treating process that results in reduction of surface roughness of the underlying floating gate, and results in a thin silicon oxy-nitride layer being formed on the floating gate. In this manner, the thin dielectric layer provides for increased capacitive coupling between the lower floating gate and the upper control gate. This also leads to a lowered programming voltage, erasing voltage and read voltage for the transistor, while maintaining the threshold voltage in a desired range. In addition, the size of the transistor and resulting storage cell can be minimized and the need for a high-voltage region in the circuit is mitigated, since, assuming a lowered programming voltage, pumping circuitry is not required.
摘要:
In a method for forming a semiconductor device and a semiconductor device formed in accordance with the method, a thin dielectric layer is provided between a lower conductive layer and an upper conductive layer. In one embodiment, the thin dielectric layer comprises an inter-gate dielectric layer, the lower conductive layer comprises a floating gate and the upper dielectric layer comprises a control gate of a transistor, for example, a non-volatile memory cell transistor. The thin dielectric layer is formed using a heat treating process that results in reduction of surface roughness of the underlying floating gate, and results in a thin silicon oxy-nitride layer being formed on the floating gate. In this manner, the thin dielectric layer provides for increased capacitive coupling between the lower floating gate and the upper control gate. This also leads to a lowered programming voltage, erasing voltage and read voltage for the transistor, while maintaining the threshold voltage in a desired range. In addition, the size of the transistor and resulting storage cell can be minimized and the need for a high-voltage region in the circuit is mitigated, since, assuming a lowered programming voltage, pumping circuitry is not required.