摘要:
A plurality of concepts related to HIFU therapy are disclosed, including a technique to spatially track and display the relative positions of a HIFU focal point and an imaging plane from an ultrasound imager, so that a clinician can ensure that the HIFU focus remains in the image plane during HIFU therapy, thereby facilitating image guided HIFU therapy. Also disclosed are a plurality of transvaginal probes that include a HIFU transducer optimized for the treatment of uterine fibroids. In one embodiment, the probe includes a piezoceramic crystal bonded to an aluminum lens, to achieve a HIFU transducer having a focal length of about 4 cm. In another embodiment, the probe includes a generally spoon-shaped transducer including a plurality of individual emitter elements. Still another concept disclosed herein is a method for evaluating a quality of a coupling between a liquid-filled volume encompassing a HIFU transducer and a tissue interface.
摘要:
A frame ensures that the alignment between a high intensity focused ultrasound (HIFU) transducer designed for vaginal use and a commercially available ultrasound image probe is maintained, so that the HIFU focus remains in the image plane during HIFU therapy. A water-filled membrane placed between the HIFU transducer and the treatment site provides acoustic coupling. The coupling is evaluated to determine whether any air bubbles exist at the coupling interface, which might degrade the therapy provided by the HIFU transducer. HIFU lesions on tissue appear as hyperechoic spots on the ultrasound image in real time during application of HIFU therapy. Ergonomic testing in humans has demonstrated clear visualization of the HIFU transducer relative to the uterus and showed the potential for the HIFU transducer to treat fibroids from the cervix to the fundus through the width of the uterus.
摘要:
Ultrasound contrast agents are used to enhance imaging and facilitate HIFU therapy in four different ways. A contrast agent is used: (1) before therapy to locate specific vascular structures for treatment; (2) to determine the focal point of a HIFU therapy transducer while the HIFU therapy transducer is operated at a relatively low power level, so that non-target tissue is not damaged as the HIFU is transducer is properly focused at the target location; (3) to provide a positive feedback mechanism by causing cavitation that generates heat, reducing the level of HIFU energy administered for therapy compared to that required when a contrast agent is not used; and, (4) to shield non-target tissue from damage, by blocking the HIFU energy. Various combinations of these techniques can also be employed in a single therapeutic implementation.
摘要:
The present invention employs hydrogels as acoustic couplings for clinical applications of ultrasound imaging and therapy, but is particularly applicable to high intensity focused ultrasound (HIFU) based therapy. While other materials can be used, it has been determined that polyacrylamide is sufficiently robust and transmissive to withstand the high temperatures encountered in HIFU therapy. One embodiment of a hydrogel coupling is configured in shape and size (length) to ensure that a focal region of an ultrasound transducer is disposed proximate the target area when the distal tip of the transducer is in contact with tissue. These couplings can be shaped to correspond to the beam focus characteristics of specific transducers. Water can be applied to hydrate the tip of the hydrogel coupling during use, and medication absorbed into the hydrogel material can be applied to the tissue in contact with the distal surface of the hydrogel.
摘要:
A noninvasive technique that can be used to deny blood flow to a particular region of tissue, without the inherent risks associated with invasive procedures such as surgery and minimally-invasive procedures such as embolization. Blood flow in selected portions of the vasculature can be occluded by selectively treating specific portions of the vasculature with high intensity focused ultrasound (HIFU). The occlusion denies undesired tissue the nutrients and oxygen provided by blood flow, causing necrosis in the undesired tissue. An imaging technology (such as magnetic resonance imaging, magnetic resonance angiography, ultrasound imaging, Doppler based ultrasound imaging, or computed tomographic angiography) is used to identify the undesired tissue, and the vascular structures associated with the undesired tissue. A portion of the vasculature providing blood flow to the undesired tissue is selected, and HIFU is administered to the selected portion of the vasculature to occlude blood flow through that portion of the vasculature.
摘要:
A plurality of concepts related to HIFU therapy are disclosed, including a technique to spatially track and display the relative positions of a HIFU focal point and an imaging plane from an ultrasound imager, so that a clinician can ensure that the HIFU focus remains in the image plane during HIFU therapy, thereby facilitating image guided HIFU therapy. Also disclosed are a plurality of transvaginal probes that include a HIFU transducer optimized for the treatment of uterine fibroids. In one embodiment, the probe includes a piezoceramic crystal bonded to an aluminum lens, to achieve a HIFU transducer having a focal length of about 4 cm. In another embodiment, the probe includes a generally spoon-shaped transducer including a plurality of individual emitter elements. Still another concept disclosed herein is a method for evaluating a quality of a coupling between a liquid-filled volume encompassing a HIFU transducer and a tissue interface.
摘要:
A method for using high intensity focused ultrasound (HIFU) to treat neurological structures to achieve a desired therapeutic effect. Depending on the dosage of HIFU applied, it can have a reversible or irreversible effect on neural structures. For example, a relatively high dose of HIFU can be used to permanently block nerve function, to provide a non-invasive alternative to severing a nerve to treat severe spasticity. Relatively lower doses of HIFU can be used to reversibly block nerve function, to alleviate pain, to achieve an anesthetic effect, or to achieve a cosmetic effect. Where sensory nerves are not necessary for voluntary function, but are involved in pain associated with tumors or bone cancer, HIFU can be used to non-invasively destroy such sensory nerves to alleviate pain without drugs. Preferably, ultrasound imaging synchronized to the HIFU therapy is used to provide real-time ultrasound image guided HIFU therapy of neural structures.
摘要:
A method for using high intensity focused ultrasound (HIFU) to treat neurological structures to achieve a desired therapeutic affect. Depending on the dosage of HIFU applied, it can have a reversible or irreversible effect on neural structures. For example, a relatively high dose of HIFU can be used to permanently block nerve function, to provide a non-invasive alternative to severing a nerve to treat severe spasticity. Relatively lower doses of HIFU can be used to reversible a block nerve function, to alleviate pain, to achieve an anesthetic effect, or to achieve a cosmetic effect. Where sensory nerves are not necessary for voluntary function, but are involved in pain associated with tumors or bone cancer, HIFU can be used to non-invasively destroy such sensory nerves to alleviate pain without drugs. Preferably, ultrasound imaging synchronized to the HIFU therapy is used to provide real-time ultrasound image guided HIFU therapy of neural structures.
摘要:
Method and apparatus for the simultaneous use of ultrasound on a probe for imaging and therapeutic purposes. The probe limits the effects of undesirable interference noise in a display by synchronizing high intensity focused ultrasound (HIFU) waves with an imaging transducer to cause the noise to be displayed in an area of the image that does not overlap the treatment site. In one embodiment, the HIFU is first energized at a low power level that does not cause tissue damage, so that the focal point of the HIFU can be identified by a change in the echogenicity of the tissue caused by the HIFU. Once the focal point is properly targeted on a desired treatment site, the power level is increased to a therapeutic level. The location of each treatment site is stored and displayed to the user to enable a plurality of spaced-apart treatment sites to be achieved. As the treatment progresses, any changes in the treatment site can be seen in the real time, noise-free image. A preferred application of the HIFU waves is to cause lesions in blood vessels, so that the supply of nutrients and oxygen to a region, such as a tumor, is interrupted. The tumor will thus eventually be destroyed. In a preferred embodiment, the HIFU is used to treat disorders of the female reproductive system, such as uterine fibroids. The HIFU treatment can be repeated at spaced-apart intervals, until any remaining fibroid tissue is destroyed.
摘要:
A method for using high intensity focused ultrasound (HIFU) to treat neurological structures to achieve a desired therapeutic affect. Depending on the dosage of HIFU applied, it can have a reversible or irreversible effect on neural structures. For example, a relatively high dose of HIFU can be used to permanently block nerve function, to provide a non-invasive alternative to severing a nerve to treat severe spasticity. Relatively lower doses of HIFU can be used to reversible a block nerve function, to alleviate pain, to achieve an anesthetic effect, or to achieve a cosmetic effect. Where sensory nerves are not necessary for voluntary function, but are involved in pain associated with tumors or bone cancer, HIFU can be used to non-invasively destroy such sensory nerves to alleviate pain without drugs. Preferably, ultrasound imaging synchronized to the HIFU therapy is used to provide real-time ultrasound image guided HIFU therapy of neural structures.