摘要:
A distributed adaptive repeater system includes a donor unit, two or more coverage units (CUs), and an intelligent hub. The donor unit operates to maintain bidirectional wireless communication with a base station of a wireless communications network. Each coverage unit maintains bidirectional wireless communication with transceivers located within a respective coverage area, and is further adapted to independently control a signal path gain to ensure stability of a respective feedback loop to the donor unit. Finally, the intelligent hub is operatively coupled between the donor unit and the coverage units, and adapted to monitor a status of each coverage unit.
摘要:
In a system for monitoring stability of an on-frequency repeater, a wide-band signature (WBS) signal associated with the repeater is generated, and inserted into an output RF signal transmitted by the repeater. Signal components corresponding to the WBS signal in an input RF signal received by the repeater are detected and analyzed to estimate a feedback path loss L.
摘要:
Methods are provided for compensating the electrical path delay imposed on signals traversing a repeater. In some embodiments, the repeater generates an output signal having an undelayed signal component. Detection of the undelayed signal component enables establishment of a low error timing reference. In other embodiments, the repeater superimposes a low level signature onto signals traversing the repeater. The signature includes embedded information, from which a receiver can determine an accurate time reference.
摘要:
An intelligent gain controller (IGC) for an on-frequency repeater implements a method for identifying a desired narrow band signal within a broadband RF signal. Thus, a candidate narrow band signal within the broadband signal is isolated. The isolated narrow band signal is then processed to detect repeating features of the narrow band signal. The detected repeating features are then analyzed to identify the signal type of the isolated narrow band signal. System gain of the in-frequency repeater can be controlled based on the power level of the identified narrow band signal.
摘要:
An intelligent gain controller (IGC) for an on-frequency repeater implements a method for identifying a desired narrow band signal within a broadband RF signal. Thus, a candidate narrow band signal within the broadband signal is isolated. The isolated narrow band signal is then processed to detect repeating features of the narrow band signal. The detected repeating features are then analyzed to identify the signal type of the isolated narrow band signal. System gain of the in-frequency repeater can be controlled based on the power level of the identified narrow band signal.
摘要:
FIG. 1 is a perspective view of a heating stove, showing my new design; FIG. 2 is another perspective view thereof; FIG. 3 is a front view thereof; FIG. 4 is a rear view thereof; FIG. 5 is a left side view thereof; FIG. 6 is a right side view thereof; FIG. 7 is a top plan view thereof; FIG. 8 is a bottom plan view thereof; FIG. 9 is an enlarged view of portion of FIG. 1; and, FIG. 10 is another enlarged view of portion of FIG. 1. The dash-dash broken lines show portions of the heating stove and form no part of the claimed design. The dot-dash broken lines shown in FIGS. 1, 9 & 10 define the boundary of the enlargement area and form no part of the claimed design.
摘要:
A system for multi-scale closed-loop eye tracking to compensate for translation and rotation motion while imaging in vivo a surface area of an internal structure of an eye of a subject includes a narrow field imaging device optically coupled to an optical path to receive light reflected from the surface area of the structure of the eye. A wide field camera is optically coupled to the optical path by a beam splitter disposed in the optical path. A tracking mirror is disposed in the optical path between the beam splitter and the structure of the eye. A control process algorithm actively compensates substantially in real time for both translational and rotational movements of the eye. A system where a torsional correction device causes a rotating movement of a subject's head and a method for multi-scale closed-loop eye tracking are also described.
摘要:
Embodiments of the present disclosure include a laminate composite toilet lid and seat and a method of manufacturing thereof. The toilet lid includes a core structural layer having a shape and size associated with the toilet lid. The toilet lid also includes a first decorative graphic layer disposed on a first surface of the core structural layer. The toilet lid further includes a plurality of exterior layers disposed on exterior surfaces of the core structural layer and the first decorative graphic layer, the exterior layers configured to envelop the toilet lid.
摘要:
A method and a device for loading a medical appliance with a medicament and/or polymer includes capturing images of a plurality of grooves or holes of the medical appliance using an image capturing device; performing digital image processing on the image of each of the grooves or holes to obtain a pattern of each of the grooves or holes; calculating a central position of the pattern of each of the grooves or holes, and determining a loading position of each of the grooves or holes based on the central position; and adjusting a relative position between a loading device and the medical appliance to align an outlet of the loading device with the loading position of the medical appliance, and loading each of the grooves or holes with the medicament and/or polymer. The method and device can load the medical appliance with the medicament and/or polymer fast and efficiently.
摘要:
A magnetics assembly (100) including a transformer (1) made of litz wire. The transformer includes a toroid core (2) and a bundle of wires (3) winding around the toroid core. The bundle of wires includes first to eighth wires, and has a central portion with all eight wires twisted together and winding around the toroid core. First and second ends of the bundle of wires oppositely extend out from the toroidal core. The ends of the first to eighth wires are connected to form a primary and a secondary coils of the transformer, wherein the second ends of the first wire and the second wire, and the first ends of the third wire and the fourth wire are sorted out to form central taps (35, 36) of the primary and secondary coils, respectively.