摘要:
Catalysts and methods useful for the production of olefins from alkanes via oxidative dehydrogenation (ODH) comprise at least one base metal and copper with an optional promoter. The catalyst preferably comprises a base metal and a copper-modified Groups 8, 9, or 10 metal on a support comprising alumina, zirconia, or mixtures thereof. Copper is preferably present in an amount of from about 0.1 to about 1.0 percent by weight of the total catalyst weight. The base metal preferably comprises manganese, chromium, gold, their corresponding oxides, or combinations thereof. The optional promoter preferably comprises platinum, palladium, iridium, rhodium, ruthenium, or any combinations thereof
摘要:
The invention relates to a reactor comprising two reaction zones and processes for the production of alkenes from alkanes. A first reaction zone includes a combustion catalyst, and a second reaction zone comprises a heating zone in thermal contact with the first reaction zone. One process comprises generating heat and an effluent by the combustion of a fuel with oxygen in the first reaction zone; passing an alkane feed through the heating zone of the second reaction zone such that the alkane feed absorbs a sufficient amount of the heat generated in the first reaction zone to initiate the conversion of alkanes to alkenes in the second reaction zone. In other embodiments, the effluent comprises oxygen, and the second reaction zone excludes a catalyst; alternatively, the effluent is substantially free of oxygen, and the second reaction zone comprises a supplemental oxygen feed and may or may not include a catalyst.
摘要:
A method for producing olefins by oxidative dehydrogenation. In one embodiment, the method comprises feeding a feed to a reactor comprising a catalyst, wherein the feed comprises oxygen, and a carbonaceous material comprising carbon monoxide and a light hydrocarbon; contacting the feed to the catalyst in the reactor; and converting at least a portion of the light hydrocarbon with oxygen to at least one olefin, while simultaneously converting at least a portion of the carbonaceous material with oxygen to carbon dioxide to form a product stream comprising the at least one olefin and by-products. The by-products comprise at least carbon monoxide. In other embodiments, at least a portion of the by-products, which comprise carbon monoxide, is recycled to the reactor. In further embodiments, the light hydrocarbon feed comprises ethane, and the olefin comprises ethylene.
摘要:
The present invention includes a process for the removal of hydrogen sulfide from hydrogen sulfide gas containing gaseous streams. In one embodiment, the process comprises feeding a sulfide ion containing solution to an oxidation unit. The method further comprises feeding an oxidizing gas to the oxidation unit and contacting the sulfide ion containing solution with the oxidizing gas under sufficient conditions to form a polysulfide solution comprising polysulfide and hydroxide ions. In addition, the process comprises mixing the polysulfide containing solution with a hydrogen sulfide gas under conditions sufficient for absorption of hydrogen sulfide and precipitation of sulfur from the polysulfide containing solution. In some embodiments, the process comprises separating the precipitated sulfur from liquid.
摘要:
A wafer structure with an electroless plating metal connecting layer and a method for fabricating the same are proposed. A wafer has an active surface and an inactive surface opposite to the active surface. The active surface has a plurality of electrical connecting pads formed thereon. An insulating protective layer is formed on the active surface of the wafer and a plurality of openings are formed in the insulating protective layer to correspond to the electrical connecting pads, so that the electrical connecting pads are exposed. A plurality of electroless plating metal connecting layers are formed on the electrical connecting pads that are exposed through the openings, by electroless plating. Therefore, the electrical connecting process of the wafer is simplified and easily implemented. As a result, the production cost is reduced, the yield is raised, and mass production of high quality is ensured simultaneously.