Abstract:
A wavelength conversion member includes a substrate and a fluorescent film that is disposed on the substrate and emits fluorescence upon reception of excitation light, wherein the fluorescent film includes an aggregate of a plurality of fluorescent particles, the aggregate being formed as a result of contact among the fluorescent particles, and a glass material filling gaps between the fluorescent particles in the aggregate, and a total volume of a volume of the glass material and a volume of the fluorescent particles in the fluorescent film is equal to or less than an envelope volume of the aggregate of the fluorescent particles in the fluorescent film.
Abstract:
A phosphor plate includes a base material, a phosphor and a scattering material. The phosphor absorbs primary light emitted by a light emitting element and emits secondary light having a wavelength longer than a wavelength of the primary light. The scattering material scatters the primary light and the secondary light. An average distance from one surface of the phosphor plate to the phosphor is longer than an average distance from the one surface to the scattering material. With such a configuration, there are provided a phosphor plate having the enhanced extraction efficiency of light emitted by a phosphor, a light emitting device including the phosphor plate, and a method for manufacturing the phosphor plate.
Abstract:
The occurrence of a color irregularity in light that is emitted from a light-emitting device is suppressed together with being able to prevent a decline in the utilization efficiency of excitation light. A light-emitting device is provided with a phosphor section that absorbs excitation light and emits first fluorescence, and a phosphor section that absorbs excitation light that has passed through the phosphor section without being converted into first fluorescence by the phosphor section and emits second fluorescence. Also, the peak wavelength of the second fluorescence is approximate to the peak wavelength of the excitation light.
Abstract:
A light emitting device of the present disclosure includes a light emitting section that generates fluorescence by receiving laser light, a reflection film that reflects laser light which is radiated to the vicinity of the light emitting section, among laser light which is emitted toward the light emitting section from a rod lens, and a reflection mirror that collects the laser light reflected by the reflection film, in the light emitting section.
Abstract:
A fluorescent material-sealed sheet includes a plurality of fluorescent sections, an upper sealing section, and a lower sealing section, the plurality of fluorescent sections being sealed by the upper sealing section and the lower sealing section.
Abstract:
A light emitting device is provided that includes a light emitting element emitting primary light, and a wavelength conversion portion provided on the light emitting element, absorbing a part of the primary light and emitting secondary light, in which the wavelength conversion portion is made of a plurality of resin layers including at least a first wavelength conversion portion made of a resin layer containing a rare earth-activated phosphor or a transition metal element-activated phosphor, and a second wavelength conversion portion made of a resin layer containing a nanocrystalline phosphor. The first wavelength conversion portion is disposed closer to the light emitting element than the second wavelength conversion portion is.According to the light emitting device, it becomes possible to prevent a substrate from discoloring due to reaction of a silver part of the light emitting device with a nanocrystalline phosphor, thereby preventing a decrease in light emitting efficiency.