摘要:
A method of fabricating a CMOS integrated circuit includes the steps of providing a substrate having a semiconductor surface, forming a gate dielectric and a plurality of gate electrodes thereon in both NMOS and PMOS regions using the surface. A multi-layer offset spacer stack including a top layer and a compositionally different bottom layer is formed and the multi-layer spacer stack is etched to form offset spacers on sidewalls of the gate electrodes. The transistors designed to utilize a thinner offset spacer are covered with a first masking material, and transistors designed to utilize a thicker offset spacer are patterned and first implanted. At least a portion of the top layer is removed to leave the thinner offset spacers on sidewalls of the gate electrodes. The transistors designed to utilize the thicker offset spacer are covered with a second masking material, and the transistors designed to utilize the thinner offset spacer are patterned and second implanted. The fabrication of the integrated circuit is then completed.
摘要:
A method of fabricating a CMOS integrated circuit includes the steps of providing a substrate having a semiconductor surface, forming a gate dielectric and a plurality of gate electrodes thereon in both NMOS and PMOS regions using the surface. A multi-layer offset spacer stack including a top layer and a compositionally different bottom layer is formed and the multi-layer spacer stack is etched to form offset spacers on sidewalls of the gate electrodes. The transistors designed to utilize a thinner offset spacer are covered with a first masking material, and transistors designed to utilize a thicker offset spacer are patterned and first implanted. At least a portion of the top layer is removed to leave the thinner offset spacers on sidewalls of the gate electrodes. The transistors designed to utilize the thicker offset spacer are covered with a second masking material, and the transistors designed to utilize the thinner offset spacer are patterned and second implanted. The fabrication of the integrated circuit is then completed.
摘要:
A method of removing silicon nitride over a semiconductor surface for forming shallow junctions. Sidewall spacers are formed along sidewalls of a gate stack that together define lightly doped drain (LDD) regions or source/drain (S/D) regions. At least one of the sidewall spacers, LDD regions and S/D regions include an exposed silicon nitride layer. The LDD or S/D regions include a protective dielectric layer formed directly on the semiconductor surface. Ion implanting implants the LDD regions or S/D regions using the sidewall spacers as implant masks. The exposed silicon nitride layer is selectively removed, wherein the protective dielectric layer when the sidewall spacers include the exposed silicon nitride layer, or a replacement protective dielectric layer formed directly on the semiconductor surface after ion implanting when the LDD or S/D regions include the exposed silicon nitride layer, protects the LDD or S/D regions from dopant loss due to etching during selectively removing.
摘要:
A process for forming an integrated circuit with reduced sidewall spacers to enable improved silicide formation between minimum spaced transistor gates. A process for forming an integrated circuit with reduced sidewall spacers by first forming sidewall spacer by etching a sidewall dielectric and stopping on an etch stop layer, implanting source and drain dopants self aligned to the sidewall spacers, followed by removing a portion of the sidewall dielectric and removing the etch stop layer self aligned to the reduced sidewall spacers prior to forming silicide.
摘要:
The present invention provides a method for patterning a metal gate electrode and a method for manufacturing an integrated circuit including the same. The method for patterning the metal gate electrode, among other steps, includes forming a metal gate electrode layer (220) over a gate dielectric layer (210) located on a substrate (110), and patterning the gate electrode layer (220) using a combination of a dry etch process (410) and a wet etch process (510).
摘要:
The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, in one embodiment, includes forming a gate structure over a substrate, and forming a stack of layers on the substrate and at least partially along a sidewall of the gate structure. In this embodiment, the stack of layers includes an initial layer located over the substrate, a buffer layer located over the initial layer and an offset layer located over the buffer layer. This embodiment of the method further includes removing horizontal segments of the offset layer and the buffer layer using a dry etch and a wet clean, wherein removing includes choosing at least one of an initial thickness of the buffer layer, a period of time for the dry etch or a period of time for the wet clean such that horizontal segments of the initial layer are exposed and substantially unaffected after the dry etch and wet clean.
摘要:
An integrated circuit (IC) includes a plurality of strained metal oxide semiconductor (MOS) devices that include a semiconductor surface having a first doping type, a gate electrode stack over a portion of the semiconductor surface, and source/drain recesses that extend into the semiconductor surface and are framed by semiconductor surface interface regions on opposing sides of the gate stack. A first epitaxial strained alloy layer (rim) is on the semiconductor surface interface regions, and is doped with the first doping type. A second epitaxial strained alloy layer is on the rim and is doped with a second doping type that is opposite to the first doping type that is used to form source/drain regions.
摘要:
A method of removing silicon nitride over a semiconductor surface for forming shallow junctions. Sidewall spacers are formed along sidewalls of a gate stack that together define lightly doped drain (LDD) regions or source/drain (S/D) regions. At least one of the sidewall spacers, LDD regions and S/D regions include an exposed silicon nitride layer. The LDD or S/D regions include a protective dielectric layer formed directly on the semiconductor surface. Ion implanting implants the LDD regions or S/D regions using the sidewall spacers as implant masks. The exposed silicon nitride layer is selectively removed, wherein the protective dielectric layer when the sidewall spacers include the exposed silicon nitride layer, or a replacement protective dielectric layer formed directly on the semiconductor surface after ion implanting when the LDD or S/D regions include the exposed silicon nitride layer, protects the LDD or S/D regions from dopant loss due to etching during selectively removing.
摘要:
The present invention provides a method for patterning a metal gate electrode and a method for manufacturing an integrated circuit including the same. The method for patterning the metal gate electrode, among other steps, includes forming a metal gate electrode layer (220) over a gate dielectric layer (210) located on a substrate (110), and patterning the gate electrode layer (220) using a combination of a dry etch process (410) and a wet etch process (510).
摘要:
A method of forming stressed-channel NMOS transistors and strained-channel PMOS transistors forms p-type source and drain regions before an n-type source and drain dopant is implanted and a stress memorization layer is formed, thereby reducing the stress imparted to the n-channel of the PMOS transistors. In addition, a non-conductive layer is formed after the p-type source and drain regions are formed, but before the n-type dopant is implanted. The non-conductive layer allows shallower n-type implants to be realized, and also serves as a buffer layer for the stress memorization layer.