摘要:
A method of forming stressed-channel NMOS transistors and strained-channel PMOS transistors forms p-type source and drain regions before an n-type source and drain dopant is implanted and a stress memorization layer is formed, thereby reducing the stress imparted to the n-channel of the PMOS transistors. In addition, a non-conductive layer is formed after the p-type source and drain regions are formed, but before the n-type dopant is implanted. The non-conductive layer allows shallower n-type implants to be realized, and also serves as a buffer layer for the stress memorization layer.
摘要:
A method of forming stressed-channel NMOS transistors and strained-channel PMOS transistors forms p-type source and drain regions before an n-type source and drain dopant is implanted and a stress memorization layer is formed, thereby reducing the stress imparted to the n-channel of the PMOS transistors. In addition, a non-conductive layer is formed after the p-type source and drain regions are formed, but before the n-type dopant is implanted. The non-conductive layer allows shallower n-type implants to be realized, and also serves as a buffer layer for the stress memorization layer.
摘要:
An integrated circuit (IC) includes a plurality of strained metal oxide semiconductor (MOS) devices that include a semiconductor surface having a first doping type, a gate electrode stack over a portion of the semiconductor surface, and source/drain recesses that extend into the semiconductor surface and are framed by semiconductor surface interface regions on opposing sides of the gate stack. A first epitaxial strained alloy layer (rim) is on the semiconductor surface interface regions, and is doped with the first doping type. A second epitaxial strained alloy layer is on the rim and is doped with a second doping type that is opposite to the first doping type that is used to form source/drain regions.
摘要:
An integrated circuit (IC) includes a plurality of strained metal oxide semiconductor (MOS) devices that include a semiconductor surface having a first doping type, a gate electrode stack over a portion of the semiconductor surface, and source/drain recesses that extend into the semiconductor surface and are framed by semiconductor surface interface regions on opposing sides of the gate stack. A first epitaxial strained alloy layer (rim) is on the semiconductor surface interface regions, and is doped with the first doping type. A second epitaxial strained alloy layer is on the rim and is doped with a second doping type that is opposite to the first doping type that is used to form source/drain regions.
摘要:
A process for forming diffused region less than 20 nanometers deep with an average doping dose above 1014 cm−2 in an IC substrate, particularly LDD region in an MOS transistor, is disclosed. Dopants are implanted into a source dielectric layer using gas cluster ion beam (GCIB) implantation, molecular ion implantation or atomic ion implantation resulting in negligible damage in the IC substrate. A spike anneal or a laser anneal diffuses the implanted dopants into the IC substrate. The inventive process may also be applied to forming source and drain (S/D) regions. One source dielectric layer may be used for forming both NLDD and PLDD regions.
摘要:
A method for reducing curvature of a wafer having a semiconductor surface. One or more process steps are identified at which wafers exhibit the largest curvature, and/or wafer curvature that may reduce die yield. A crystal damaging process converts at least a portion of the semiconductor surface into at least one amorphous surface region After or contemporaneously with the crystal damaging, the amorphous surface region is recrystallized by recrystallization annealing that anneals the wafer for a time ≦5 seconds at a temperature sufficient for recrystallization of the amorphous surface region. A subsequent photolithography step is facilitated due to the reduction in average wafer curvature provided by the recrystallization.
摘要:
The present invention provides, for use in a semiconductor manufacturing process, a method (100) of preparing an ion-implantation source material. The method includes providing (110) a deliquescent ion implantation source material and mixing (110) the deliquescent ion implantation source material with an organic liquid to form a paste.
摘要:
Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm−2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
摘要:
In one aspect there is provided a method of manufacturing a semiconductor device comprising forming gate electrodes over a semiconductor substrate, forming source/drains adjacent the gate electrodes, depositing a stress inducing layer over the gate electrodes. A laser anneal is conducted on at least the gate electrodes subsequent to depositing the stress inducing layer at a temperature of at least about 1100° C. for a period of time of at least about 300 microseconds, and the semiconductor device is subjected to a thermal anneal subsequent to conducting the laser anneal.
摘要:
Exemplary embodiments provide methods for reducing and/or removing slip and plastic deformations in semiconductor materials by use of one or more ultra-fast thermal spike anneals. The ultra-fast thermal spike anneal can be an ultra-high temperature (UHT) anneal having an ultra-short annealing time. During the ultra-fast thermal spike anneal, an increased annealing power density can be used to achieve a desired annealing temperature required by manufacturing processes. In an exemplary embodiment, the annealing temperature can be in the range of about 1150° C. to about 1390° C. and the annealing dwell time can be on the order of less than about 0.8 milliseconds. In various embodiments, the disclosed spike-annealing processes can be used to fabrication structures and regions of MOS transistor devices, for example, drain and source extension regions and/or drain and source regions.