摘要:
A method and apparatus for powering up an integrated circuit (IC). An IC includes a plurality of power domains each coupled to receive power from one of a plurality of power sources. Each power domain includes a power-sensing unit. A power-sensing unit in a first one of the plurality of power domains is coupled to receive a first power ok signal from an upstream power domain, and is configured to assert a second power ok signal to be provided to a second power domain. A power-sensing unit in the second power domain is coupled to detect the presence of voltage in the first power domain, and to receive the first power ok signal. When the power-sensing unit in the second power domain has both sensed the presence of power in the first power domain and received the second power ok signal, a third power ok signal is asserted.
摘要:
Receiver architectures and bias circuits for a data processor are provided. A receiver architecture includes a linear receiver having a first input node for a data (DQ) signal, a second input node for a reference voltage, and output nodes for a differential output signal. The linear receiver compares the DQ signal to the reference voltage, and generates the differential output signal in response to the comparison. A sense amplifier is coupled to the linear receiver. The sense amplifier has input nodes connected to the output nodes of the linear receiver, and an output node for a binary output signal having voltage characteristics compatible with the processor. The sense amplifier transforms the differential output signal into the binary output signal. The receiver architecture also includes a programming architecture coupled to the linear receiver to set operating characteristics of the linear receiver.
摘要:
Receiver architectures and related bias circuits for a data processor are provided. One embodiment of a receiver architecture for a computer processor includes a first linear receiver stage configured to receive a first input, a second input, and a first bias voltage. The first linear receiver stage is configured to generate a first differential output signal in response to a comparison between the first input and the second input. The first differential output signal has a specified programmable voltage swing that is influenced by the first bias voltage. The receiver architecture also includes a first programmable bias circuit coupled to the first linear receiver stage. The first programmable bias circuit is configured to generate the first bias voltage.
摘要:
Receiver architectures and related bias circuits for a data processor are provided. One embodiment of a receiver architecture includes three linear receiver stages coupled in series. The first stage receives a differential data strobe (DQS) input signal associated with a plurality of data (DQ) signals, and the first stage has a first programmable swing voltage associated therewith. The second stage has a programmable shift voltage associated therewith, and the third stage has a second programmable swing voltage associated therewith. The receiver architecture also includes a programming architecture coupled to the first stage, the second stage, and the third stage. The programming architecture is configured to set the first programmable swing voltage, the programmable shift voltage, and the second programmable swing voltage.
摘要:
A memory loopback system and method including an address/command transmit source configured to transmit a command and associated address through an address/command path. A transmit data source is configured to transmit write data associated with the command through a write path. Test control logic is configured to generate gaps between successive commands. A loopback connection is configured to route the write data from the write path to a read path. A data comparator is configured to compare the data received via the read path to a receive data source and generate a data loopback status output. Pattern generation logic can be configured to generate a loopback strobe, the loopback strobe being coupled to the read path. The pattern generation logic may be configured to synthesize a read strobe based on the test control logic and to use the synthesized read strobe as the loopback strobe. The loopback connection may be configured to route the address/command data from the address/command path to an address/command comparator, the address/command comparator being configured to compare the address/command data to an address/command receive source and generate an address/command loopback status output.
摘要:
Methods and apparatus for aligning a clock signal and a set of strobe signals are disclosed. In one embodiment, a memory controller includes a clock generator configured to generate the clock signal, and a respective strobe signal generator configured to generate each strobe signal. The memory controller further includes a phase recovery engine configured to receive an error signal from a corresponding memory device, wherein the error signal conveys an error indication indicative of an alignment of the strobe signal relative to the clock signal for each of a plurality of cycles of the strobe signal. The phase recovery engine includes an accumulator configured to maintain an accumulation value that depends upon the error indications for the plurality of cycles of the strobe signal. The strobe signal generator is configured to control a delay associated with generation of the strobe signal depending upon the accumulation value.
摘要:
A system and method for using variable delay adjusters located at various points across an integrated circuit to measure clock skew and jitter for clock signals of the integrated circuit. A delay controller of the integrated circuit may measure and compensate for clock skew detected between two clock signals by configuring variable delay adjusters located inline with the respective clock signals. Such a delay controller may also use the variable delay adjusters to correct duty cycle errors in a clock signal and may further utilize the variable delay adjusters to measure and characterize jitter detected on the clock signals.
摘要:
An apparatus including a bias voltage generator and one or more cascode drivers. Each of the one or more cascode drivers may include a plurality of cascode transistors. The bias voltage generator may control the cascode bias voltages provided to the cascode transistors based on a plurality of programmable control bits received by the bias voltage generator. The received plurality of programmable control bits may include a first set of programmable control bits, which may be used to control the magnitude of the cascode bias voltages, and a second set of programmable control bits, which may be used to control the stability of the cascode bias voltages.
摘要:
An electronic circuit. The electronic circuit includes a first circuit leg coupled to a first supply voltage node and a second supply voltage node. The first circuit leg includes a first reference current circuit configured to produce a first reference current and a second reference current circuit configured to produce a second reference current. The electronic circuit further includes a second circuit leg coupled in parallel with the first circuit leg. The second circuit leg includes a first transistor coupled to form a current mirror with the first reference current circuit and a second transistor coupled to form a current mirror with the second reference current circuit. The source terminals of each of the first and second transistors are coupled together to form a third supply voltage node.
摘要:
An electronic circuit. The electronic circuit includes a first circuit leg coupled to a first supply voltage node and a second supply voltage node. The first circuit leg includes a first reference current circuit configured to produce a first reference current and a second reference current circuit configured to produce a second reference current. The electronic circuit further includes a second circuit leg coupled in parallel with the first circuit leg. The second circuit leg includes a first transistor coupled to form a current mirror with the first reference current circuit and a second transistor coupled to form a current mirror with the second reference current circuit. The source terminals of each of the first and second transistors are coupled together to form a third supply voltage node