摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
摘要:
A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
A semiconductor device with a spiral inductor is provided, which determines the area of an insulation layer to be provided in the surface of a wiring board thereunder. A trench isolation oxide film, which is a complete isolation oxide film including in part the structure of a partial isolation oxide film, is provided in a larger area of the surface of an SOI layer than that corresponding to the area of a spiral inductor. The trench isolation oxide film is comprised of a first portion having a first width and extending in a direction approximately perpendicular the surface of a buried oxide film, and a second portion having a second width smaller than the first width and being continuously formed under the first portion, extending approximately perpendicular to the surface of the buried oxide film. The trench isolation oxide film is provided such that a horizontal distance between each end surface of the second portion and a corresponding end surface of the spiral inductor makes a predetermined distance or more.
摘要:
A semiconductor device with a spiral inductor is provided, which determines the area of an insulation layer to be provided in the surface of a wiring board thereunder. A trench isolation oxide film, which is a complete isolation oxide film including in part the structure of a partial isolation oxide film, is provided in a larger area of the surface of an SOI layer than that corresponding to the area of a spiral inductor. The trench isolation oxide film includes a first portion having a first width and extending in a direction approximately perpendicular the surface of a buried oxide film, and a second portion having a second width smaller than the first width and being continuously formed under the first portion, extending approximately perpendicular to the surface of the buried oxide film. The trench isolation oxide film is provided such that a horizontal distance between each end surface of the second portion and a corresponding end surface of the spiral inductor makes a predetermined distance or more.
摘要:
In order to improve isolation between an FS (field shielding) electrode and a gate electrode (6), upper and lower major surfaces of a polysilicon layer (35) forming a principal part of an FS electrode (5) are covered with nitride films (SiN films) (34, 36) respectively. Therefore, it is possible to inhibit portions in the vicinity of edge portions of the polysilicon layer (35) from being oxidized by an oxidant following oxidation for forming a gate insulating film (14). Thus, the polysilicon layer (35) is inhibited from deformation following oxidation, whereby the distance between an FS electrode (5) and a gate electrode (6) is sufficiently ensured. Consequently, isolation between the FS electrode (5) and the gate electrode (6) is improved.