摘要:
A first paste for a first electrode layer and a second paste for a second electrode layer are printed on a fired solid electrolyte by screen printing, etc. to form electrode patterns for forming the first electrode layer and the second electrode layer. The first and second pastes can be prepared by dissolving a binder in an organic solvent, adding an appropriate amount of the obtained solution to powders of an electrode active substance material and a solid electrolyte material, and kneading the resultant mixture. The first and second pastes are applied to the fired solid electrolyte to form a cell precursor, the cell precursor is placed in a hot press mold subjected to a thermal treatment while pressing from above by a punch, whereby the first and second electrode layer are formed from the first and second pastes.
摘要:
A first paste for a first electrode layer and a second paste for a second electrode layer are printed on a fired solid electrolyte by screen printing, etc. to form electrode patterns for forming the first electrode layer and the second electrode layer. The first and second pastes can be prepared by dissolving a binder in an organic solvent, adding an appropriate amount of the obtained solution to powders of an electrode active substance material and a solid electrolyte material, and kneading the resultant mixture. The first and second pastes are applied to the fired solid electrolyte to form a cell precursor, the cell precursor is placed in a hot press mold subjected to a thermal treatment while pressing from above by a punch, whereby the first and second electrode layer are formed from the first and second pastes.
摘要:
An all-solid-state cell has a fired solid electrolyte body, a first electrode layer integrally formed on one surface of the fired solid electrolyte body by mixing and firing an electrode active material and a solid electrolyte, and a second electrode layer integrally formed on the other surface of the fired solid electrolyte body by mixing and firing an electrode active material and a solid electrolyte. The first and the second electrode layers are formed by mixing and firing the electrode active material and the amorphous solid electrolyte, which satisfy the relation Ty>Tz (wherein Ty is a temperature at which the capacity of the electrode active material is lowered by reaction between the electrode active material and the solid electrolyte material, and Tz is a temperature at which the solid electrolyte material is shrunk by firing).
摘要:
The present invention provides a secondary battery using a liquid electrolyte excellent in storage characteristics. The secondary battery includes a cathode, an anode, and a liquid electrolyte, where the cathode and the anode contain at least one mutual active material. This symmetrical electrode configuration, that the at least one active material for the cathode and the anode is mutual, enables equalization of an electrode electric potential difference before charge or after discharge; and thus electrolyte degradation is efficiently restrained to improve storage characteristics.
摘要:
An all-solid battery having a high output power is provided which exhibits high safety and is capable of being produced at a low cost is provided. The all-solid battery includes an internal electrode body having a cathode comprising a cathode material, an anode comprising an anode material, and a solid electrolyte layer comprising a solid electrolyte. The cathode material, the anode material, and the solid electrolyte are phosphoric acid compounds. The internal electrode body is integrated by firing the cathode, the anode, and the solid electrolyte layer, and the internal electrode body contains water.
摘要:
An all-solid battery having a high output power, exhibiting high safety, and capable of being produced at a low cost is provided. The all-solid battery (8) includes an internal electrode body (6) having a cathode (1) comprising a cathode material, an anode (2) comprising an anode material, and a solid electrolyte layer (3) comprising a solid electrolyte, the cathode material, the anode material, and the solid electrolyte being phosphoric acid compounds, the internal electrode body (6) being integrated by firing the cathode (1), anode (2), and solid electrolyte layer (3), and the internal electrode body (6) containing water.
摘要:
An all-solid-state battery having a high output power and a long life, exhibiting high safety, and being produced at a low cost is provided. The all-solid-state battery has a cathode comprising a cathode material, an anode comprising an anode material, and a solid electrolyte layer comprising a solid electrolyte, wherein the cathode material, the anode material, and the solid electrolyte are a compound shown by the following formulas (1), (2), and (3), respectively: MaN1bX1c (1) MdN2eX2f (2) MgN3hX3i (3) wherein M represents H, Li, Na, Mg, Al, K, or Ca and X1, X2, and X3 are polyanions, each of N1 and N2 is at least one atom selected from the group consisting of transition metals, Al, and Cu, and N3 is at least one atom selected from the group consisting of Ti, Ge, Hf, Zr, Al, Cr, Ga, Fe, Sc, and In.
摘要:
An all-solid-state battery having a high output power and a long life, exhibiting high safety, and being produced at a low cost is provided. The all-solid-state battery has a cathode comprising a cathode material, an anode comprising an anode material, and a solid electrolyte layer comprising a solid electrolyte, wherein the cathode material, the anode material, and the solid electrolyte are a compound shown by the following formulas (1), (2), and (3), respectively: MaN1bX1c (1) MdN2eX2f (2) MgN3hX3i (3) wherein M represents H, Li, Na, Mg, Al, K, or Ca and X1, X2, and X3 are polyanions, each of N1 and N2 is at least one atom selected from the group consisting of transition metals, Al, and Cu, and N3 is at least one atom selected from the group consisting of Ti, Ge, Hf, Zr, Al, Cr, Ga, Fe, Sc, and In.
摘要:
The present invention is to provide a cathode active material configured to increase, when used in a lithium battery, the discharge capacity of the lithium battery higher than conventional lithium batteries, and a lithium battery including the cathode active material. Presented is a cathode active material for lithium batteries, wherein the cathode active material is represented by the following composition formula (1) and has a rock salt type crystal structure including formula (1): Li2Ni1-x-yCoxMnyTiO4 wherein x and y are real numbers that satisfy x>0, y>0 and x+y
摘要:
In a non-aqueous electrolyte secondary battery, in order to adjust a cathode active material in which guest cation such as Na and Li is included, alkaline metal fluoride which is expressed by a general formula AF and transition metal fluoride which is expressed by a formula M′ F2 are subjected to a mechanical milling process to produce metal fluoride compound AM′ F3. The mechanical milling process desirably uses a planetary ball mill.