摘要:
A manufacturing method of an epitaxial substrate includes the steps of: forming a sacrificial layer, which has a first micro/nano structure, on a substrate; and forming a buffer layer on the sacrificial layer. The sacrificial layer comprises a plurality of micro/nano particles, and the first micro/nano structure is formed after the plurality of micro/nano particles are removed. An epitaxial substrate and a manufacturing method of a light emitting diode (LED) apparatus are also disclosed.
摘要:
A light-emitting diode (LED) apparatus includes an epitaxial multilayer, a micro/nano rugged layer and an anti-reflection layer. The epitaxial multilayer has a first semiconductor layer, an active layer and a second semiconductor layer in sequence. The micro/nano rugged layer is disposed on the first semiconductor layer of the epitaxial multilayer. The anti-reflection layer is disposed on the micro/nano rugged layer. In addition, a manufacturing method of the LED apparatus is also disclosed.
摘要:
A light-emitting diode device includes an epitaxial layer, a current blocking layer and a current spreading layer. The current blocking layer is disposed on one side of the epitaxial layer and contacts with a portion of the epitaxial layer. The current spreading layer is disposed on one side of the epitaxial layer and contacts with at least a portion of the current blocking layer.
摘要:
A light emitting diode (LED) device includes a stacked epitaxial structure, a heat-conductive plate and a seed layer. The stacked epitaxial structure sequentially includes a first semiconductor layer (N—GaN), a light emitting layer, and a second semiconductor layer (P—GaN). The heat-conductive plate is disposed on the first semiconductor layer, and the seed layer is disposed between the first semiconductor layer and the heat-conductive plate. Also, the present invention discloses a manufacturing method thereof including the steps of: forming at least one temporary substrate, which is made by a curable polymer material, on an LED device, and forming at least a heat-conductive plate on the LED device.
摘要:
A light-emitting diode (LED) apparatus includes an epitaxial layer and a current spreading layer. The epitaxial layer has a first semiconductor layer, an active layer and a second semiconductor layer. The current spreading layer is disposed on the first semiconductor layer of the epitaxial layer and has a micro/nano roughing structure layer and a transparent conductive layer. The micro/nano roughing structure layer has a plurality of hollow parts, and the transparent conductive layer covers a surface of the micro/nano roughing structure layer and is filled within the hollow parts. In addition, a manufacturing method of the LED apparatus and a current spreading layer with a micro/nano structure are also disclosed.
摘要:
A light emitting diode apparatus includes a heat dissipating substrate, a composite layer, an epitaxial layer, a first electrode and a second electrode. The composite layer includes a reflective layer, a transparent conductive layer and a patterned insulating thermoconductive layer, which is disposed between the reflective layer and the transparent conductive layer. The composite layer is disposed between the heat dissipating substrate and the epitaxial layer and allows currents to concentrate to the reflective layer or the transparent conductive layer and then to be diffused evenly through the transparent conductive layer. The epitaxial layer includes a first semiconductor layer electrically connected with the first electrode, an active layer and a second semiconductor layer electrically connected with the second electrode.
摘要:
A light emitting diode (LED) device includes a stacked epitaxial structure, a heat-conductive plate and a seed layer. The stacked epitaxial structure sequentially includes a first semiconductor layer (N—GaN), a light emitting layer, and a second semiconductor layer (P—GaN). The heat-conductive plate is disposed on the first semiconductor layer, and the seed layer is disposed between the first semiconductor layer and the heat-conductive plate. Also, the present invention discloses a manufacturing method thereof including the steps of: forming at least one temporary substrate, which is made by a curable polymer material, on an LED device, and forming at least a heat-conductive plate on the LED device.
摘要:
A manufacturing method of a light emitting diode (LED) apparatus includes the steps of: forming at least one temporary substrate, which is made by a curable material, on a LED device; and forming at least a thermal-conductive substrate on the LED device. The manufacturing method does not need the step of adhering the semiconductor structure onto another substrate by using an adhering layer, and can make the devices to be in sequence separated after removing the temporary substrate, thereby obtaining several LED apparatuses. As a result, the problem of current leakage due to the cutting procedure can be prevented so as to reduce the production cost and increase the production yield.
摘要:
A light emitting diode (LED) device includes a stacked epitaxial structure, a heat-conductive plate and a seed layer. The stacked epitaxial structure sequentially includes a first semiconductor layer (N—GaN), a light emitting layer, and a second semiconductor layer (P—GaN). The heat-conductive plate is disposed on the first semiconductor layer, and the seed layer is disposed between the first semiconductor layer and the heat-conductive plate. Also, the present invention discloses a manufacturing method thereof including the steps of: forming at least one temporary substrate, which is made by a curable polymer material, on an LED device, and forming at least a heat-conductive plate on the LED device.
摘要:
A light-emitting diode (LED) apparatus includes an epitaxial multilayer, a micro/nano rugged layer and an anti-reflection layer. The epitaxial multilayer has a first semiconductor layer, an active layer and a second semiconductor layer in sequence. The micro/nano rugged layer is disposed on the first semiconductor layer of the epitaxial multilayer. The anti-reflection layer is disposed on the micro/nano rugged layer. In addition, a manufacturing method of the LED apparatus is also disclosed.