摘要:
A method of manufacturing a magnetoresistance effect element includes forming an insulating layer on a first ferromagnetic layer, forming an aperture reaching the first ferromagnetic layer by thrusting a needle from the top surface of the insulating layer, and depositing a ferromagnetic material to form a second ferromagnetic layer overlying the insulating layer which buries the aperture. The aperture can have an opening width not larger than 20 nm. A current flowing between the first ferromagnetic layer and the needle can be monitored, and thrusting of the needle an be interrupted when the current reaches a predetermined value.
摘要:
A magnetoresistance effect element includes a first ferromagnetic layer (1), insulating layer (3) overlying the first ferromagnetic layer, and second ferromagnetic layer (2) overlying the insulating layer. The insulating layer has formed a through hole (A) having an opening width not larger than 20 nm, and the first and second ferromagnetic layers are connected to each other via the through hole.
摘要:
A magnetoresistance effect element includes a first ferromagnetic layer (1), insulating layer (3) overlying the first ferromagnetic layer, and second ferromagnetic layer (2) overlying the insulating layer. The insulating layer has formed a through hole (A) having an opening width not larger than 20 nm, and the first and second ferromagnetic layers are connected to each other via the through hole.
摘要:
A method of manufacturing a magnetoresistance effect element includes forming an insulating layer on a first ferromagnetic layer, forming an aperture reaching the first ferromagnetic layer by thrusting a needle from the top surface of the insulating layer, and depositing a ferromagnetic material to form a second ferromagnetic layer overlying the insulating layer which buries the aperture. The aperture can have an opening width not larger than 20 nm. A current flowing between the first ferromagnetic layer and the needle can be monitored, and thrusting of the needle an be interrupted when the current reaches a predetermined value.
摘要:
A magnetoresistance effect element includes a first ferromagnetic layer (1), insulating layer (3) overlying the first ferromagnetic layer, and second ferromagnetic layer (2) overlying the insulating layer. The insulating layer has formed a through hole (A) having an opening width not larger than 20 nm, and the first and second ferromagnetic layers are connected to each other via the through hole.
摘要:
A magnetoresistance effect element includes a first ferromagnetic layer (1), insulating layer (3) overlying the first ferromagnetic layer, and second ferromagnetic layer (2) overlying the insulating layer. The insulating layer has formed a through hole (A) having an opening width not larger than 20 nm, and the first and second ferromagnetic layers are connected to each other via the through hole.
摘要:
A method of manufacturing a magnetoresistance effect element includes forming an insulating layer on a first ferromagnetic layer, forming an aperture reaching the first ferromagnetic layer by thrusting a needle from the top surface of the insulating layer, and depositing a ferromagnetic material to form a second ferromagnetic layer overlying the insulating layer which buries the aperture. The aperture can have an opening width not larger than 20 nm. A current flowing between the first ferromagnetic layer and the needle can be monitored, and thrusting of the needle can be interrupted when the current reaches a predetermined value.
摘要:
A magnetoresistance effect element includes a first ferromagnetic layer, insulating layer overlying the first ferromagnetic layer, and second ferromagnetic layer overlying the insulating layer. The insulating layer has formed a through hole having an opening width not larger than 20 nm, and the first and second ferromagnetic layers are connected to each other via the through hole.
摘要:
According to one embodiment, a magnetoresistive element includes a storage layer having a variable and perpendicular magnetization, a tunnel barrier layer on the storage layer, a reference layer having an invariable and perpendicular magnetization on the tunnel barrier layer, a hard mask layer on the reference layer, and a sidewall spacer layer on sidewalls of the reference layer and the hard mask layer. An in-plane size of the reference layer is smaller than an in-plane size of the storage layer. A difference between the in-plane sizes of the storage layer and the reference layer is 2 nm or less. The sidewall spacer layer includes a material selected from a group of a diamond, DLC, BN, SiC, B4C, Al2O3 and AlN.
摘要:
According to one embodiment, a magnetoresistive element includes a storage layer having a variable and perpendicular magnetization, a tunnel barrier layer on the storage layer, a reference layer having an invariable and perpendicular magnetization on the tunnel barrier layer, a hard mask layer on the reference layer, and a sidewall spacer layer on sidewalls of the reference layer and the hard mask layer. An in-plane size of the reference layer is smaller than an in-plane size of the storage layer. A difference between the in-plane sizes of the storage layer and the reference layer is 2 nm or less. The sidewall spacer layer includes a material selected from a group of a diamond, DLC, BN, SiC, B4C, Al2O3 and AlN.