Abstract:
A conductor layer is formed on one surface of a base insulating layer. The conductor layer is composed of a pair of rectangular collector portions and drawn-out conductor portions extending in long-sized shapes from the collector portions, respectively. Cover layers are formed on the base insulating layer to cover respective given portions of the conductor layer. A paste composition containing a compound represented by the formula (1) is used as a material for the cover layer.
Abstract:
The dye-sensitized solar cell includes a working electrode, a counter electrode that is disposed to face the working electrode with a space therebetween, and an electrolyte that fills in between the working electrode and the counter electrode. The counter electrode includes a substrate having a reflectance of 30% or more at least one wavelength in the range of 400 to 750 nm.
Abstract:
A dye-sensitized solar cell electrode includes a substrate made of a polyimide film obtained by reaction of a biphenyl tetracarboxylic acid dianhydride compound with a paraphenylenediamine compound.
Abstract:
A printed circuit board includes a base insulating layer formed of a porous film. Conductor traces are formed on the base insulating layer formed of the porous film. A cover insulating layer is formed on the base insulating layer to cover the conductor traces. The porous film used as the base insulating layer has a reflectivity of not less than 50% for light of at least a part of wavelengths in a wavelength region from 400 nm to 800 nm.
Abstract:
A plurality of conductor traces are formed on a porous base insulating layer made of porous ePTFE. Each conductor trace has a laminated structure of a seed layer and a conductor layer. A cover insulating layer is formed on the base insulating layer to cover each conductor trace. The ePTFE used as the porous base insulating layer has continuous pores. An average pore size of the ePTFE is not less than 0.05 μm and not more than 1.0 μm.
Abstract:
A resist film is formed on a conductor layer of a two-layered base material composed of a carrier layer and the conductor layer. Next, the resist film is exposed and developed, so that an etching resist pattern is formed. A region of the conductor layer that is exposed while not covered with the etching resist pattern is removed by etching. A conductor pattern is formed by removing the etching resist pattern. Then, an adhesive layer precursor is applied on an entire surface including an upper surface of the conductor pattern. The adhesive layer precursor is exposed and developed, so that an adhesive pattern is formed on the conductor pattern. After that, a base insulating layer is joined onto the conductor pattern with the adhesive pattern sandwiched therebetween. Finally, a carrier layer is separated from the conductor pattern, so that the FPC board is manufactured.
Abstract:
A dye-sensitized solar cell electrode includes a substrate; a conductive layer formed on one side surface of the substrate and is surrounded by a sealing layer for sealing in an electrolyte; a current collecting layer formed on the other side surface of the substrate; and a conductive portion that allows electrical conduction between the conductive layer and the current collecting layer in the thickness direction of the substrate.
Abstract:
A method for producing a sensor board includes the steps of preparing an insulating layer; forming at least a pair of electrodes on the insulating layer; and forming a conductive layer by spraying a conductive component-containing liquid onto the insulating layer by an ultrasonic spray method so as to cover the electrodes.
Abstract:
A substance detection sensor includes an insulating layer; two electrodes spaced in opposed relation to each other on the insulating layer; and conductive layers formed between the two electrodes on the insulating layer so as to electrically connect the two electrodes, and of which a swelling ratio varies depending on the type and/or amount of a specific gas. The conductive layers are formed by dividing into plural layers between the two electrodes.