摘要:
Provided are: a method for manufacturing a highly pure silicon by unidirectional solidification of molten silicon, that can inexpensively and industrially easily manufacture highly pure silicon that has a low oxygen concentration and low carbon concentration and is suitable for applications such as manufacturing solar cells; highly pure silicon obtained by this method; and silicon raw material for manufacturing highly pure silicon. A method for manufacturing highly pure silicon using molten silicon containing 100 to 1000 ppmw of carbon and 0.5 to 2000 ppmw of germanium as the raw material when manufacturing highly pure silicon by unidirectionally solidifying molten silicon raw material in a casting container, the highly pure silicon obtained by this method, and the silicon raw material for manufacturing the highly pure silicon.
摘要:
Provided are a method for manufacturing a highly pure silicon by unidirectional solidification of molten silicon, that can inexpensively and industrially easily manufacture highly pure silicon that has a low oxygen concentration and low carbon concentration and is suitable for applications such as manufacturing solar cells; highly pure silicon obtained by this method and silicon raw material for manufacturing highly pure silicon. A method for manufacturing highly pure silicon using molten silicon containing 100 to 1000 ppmw of carbon and 0.5 to 2000 ppmw of germanium as the raw material when manufacturing highly pure silicon by unidirectionally solidifying molten silicon raw material in a casting container, the highly pure silicon obtained by this method, and the silicon raw material for manufacturing the highly pure silicon.
摘要:
A process for production of Si, characterized by adding an oxide, hydroxide, carbonate or fluoride of an alkali metal element, or an oxide, hydroxide, carbonate or fluoride of an alkaline earth metal element, or two or more of such compounds, to solid SiO in a total molar amount of from 1/20 to 1000 times with respect to the moles of solid SiO, heating the mixture at between the melting point of Si and 2000° C. to induce a chemical reaction which produces Si and separating and recovering the Si from the reaction by-product, for the purpose of inexpensively and efficiently producing Si from various forms of solid SiO with no industrial value produced from Si production steps and the like.
摘要:
It is possible to produce high purity Si by heating solid SiO at a temperature of at least 1000° C. and lower than 1730° C., for a disproportionation reaction in which the SiO solid is decomposed to liquid or solid Si and solid SiO2, and the produced Si is separated from the SiO2 and/or SiO. The SiO solid can be obtained by a process whereby a starting mixture of carbon C, silicon Si or ferrosilicon, or a combination thereof, with SiO2 is heated to generate SiO gas-containing gas, and the SiO-containing gas is cooled to produce SiO solid.
摘要:
The present invention provides a method of refining low purity Si by a slag, in particular removing B, which suppresses wear of the reaction vessel due to the slag and produces high purity Si used for solar battery materials etc. at a low cost, comprising adding SiO2 and an alkali oxide or alkali carbonate as a slag material into molten Si to form a slag during which adding one or more types of materials among materials the same as the reaction vessel material used or ingredients included in the reaction vessel material into the slag so as to remove the impurities in the molten Si.
摘要:
The present invention provides a method of refining low purity Si by a slag, in particular removing B, which suppresses wear of the reaction vessel due to the slag and produces high purity Si used for solar battery materials etc. at a low cost, comprising adding SiO2 and an alkali oxide or alkali carbonate as a slag material into molten Si to form a slag during which adding one or more types of materials among materials the same as the reaction vessel material used or ingredients included in the reaction vessel material into the slag so as to remove the impurities in the molten Si.
摘要:
The present invention provides a high purity silicon production system and production method suitable for using inexpensive metallurgical grade metal silicon as a material and using the slag refining method to produce high purity silicon with a purity of 6N or more suitable for solar battery applications, in particular, high purity silicon with a boron content of at least not more than 0.3 mass ppm, inexpensively on an industrial scale, that is, a high purity silicon production system and production method using the slag refining method wherein a direct electromagnetic induction heating means having the function of directly heating the molten silicon in the crucible by electromagnetic induction is arranged outside the outside wall surface of the above crucible and the crucible is formed by an oxidation resistant material at least at a region where the molten silicon contacts the crucible inside wall surface at the time of not powering the direct electromagnetic induction heating means.
摘要:
The present invention provides a high purity silicon production system and production method suitable for using inexpensive metallurgical grade metal silicon as a material and using the slag refining method to produce high purity silicon with a purity of 6N or more suitable for solar battery applications, in particular, high purity silicon with a boron content of at least not more than 0.3 mass ppm, inexpensively on an industrial scale, that is, a high purity silicon production system and production method using the slag refining method wherein a direct electromagnetic induction heating means having the function of directly heating the molten silicon in the crucible by electromagnetic induction is arranged outside the outside wall surface of the above crucible and the crucible is formed by an oxidation resistant material at least at a region where the molten silicon contacts the crucible inside wall surface at the time of not powering the direct electromagnetic induction heating means.
摘要:
A dense insulating thin film having a remarkably improved insulating property can be formed by a process comprising a first step of forming a first portion of an insulating thin film on a substrate by a sputtering process without exposing the substrate to a plasma or while irradiating the substrate with low energy particles and a second step of forming a second portion of the insulating thin film on the first portion while exposing the substrate to a plasma or while irradiating the substrate with high energy particles, thereby forming said insulating thin film on the substrate. The insulating property in terms of the dielectric breakdown voltage is 100 V or more as determined in a film thickness of 1 .mu.m or less and an area of 20 mm.sup.2.