摘要:
In a semiconductor device which has a substrate, at least one thin film capacitor having a lower electrode layer deposited on the substrate, a dielectric layer overlaid on the lower electrode layer, and an upper electrode layer stacked on the dielectric layer, the lower electrode layer is surrounded by an insulator layer of Si.sub.3 N.sub.4.
摘要:
A method for fabricating a thin-film capacitor for a semiconductor integrated circuit device includes steps of forming a barrier metal layer, forming a dielectric film, forming an interlayer insulating film, exposing the dielectric film and forming an upper electrode. The thin-film capacitor is fabricated by successively depositing the dielectric film and the upper electrode on a lower electrode. The dielectric film is made of a material having a high permittivity such as SrTiO.sub.3. The interlayer insulating film is left at side portions of the lower electrode and the dielectric film. In one aspect of the invention, even if the high permittivity film becomes thin at the side and end portions of the lower electrode, the interlayer insulating film can suppress an increase in a leakage current. In another aspect of the invention, the high permittivity film and lower electrode may be etched successively and collectively and an upper electrode is deposited thereon. It is possible to suppress an occurrence of short-circuiting of the electrodes and an increase in the leakage current at the side portions of the high permittivity film.
摘要:
After an interlayer insulating film is deposited on a silicon substrate, a contact hole or contact holes is or are formed at a desired position(s) and, then, after a polysilicon layer is deposited and the contact hole(s) is (are) embedded, the surface of the polysilicon layer is flattened by chemical and mechanical polishing using at least one of piperazine or colloidal silica slurry, and a barrier metal film 4 and a highly dielectric thin film 5 are deposited and processed to a desired size. Finally, an Al/TiN film 6 adapted for the upper electrode is formed. The leak current of the thin film capacitor which is obtained according to this method can be greatly reduced.
摘要:
A thin film capacitor uses a dielectric film of high dielectric constant. A lower electrode is disposed on a contact, an interlayer insulating film is in contact with the lower electrode, a dielectric film of high dielectric constant covers the lower electrode, and an upper electrode covers the dielectric film. Thicknesses of the dielectric film at lower end portions of the lower electrode are thin but thick enough to make a leakage current value lower than a tolerable value thereof. At locations immediately below the lower electrode, the interlayer insulating film has portions whose thicknesses are larger than thicknesses of other portions thereof. The interlayer insulating film is such that, immediately below the regions of the dielectric film which are located at lower end portions of sides of the lower electrode and at which thicknesses of the dielectric film are very thin, the thicknesses of the interlayer insulating film are made larger than the rest thereof, or the dielectric film is such that lower end portions thereof are thin but thick enough to make a leakage current value lower than a tolerable value thereof. In this way, the occurrence of leakage current at the lower end portions of the lower electrode is suppressed.
摘要:
A thin film capacitor uses a dielectric film of high dielectric constant. A lower electrode is disposed on a contact, an interlayer insulating film is in contact with the lower electrode, a dielectric film of high dielectric constant covers the lower electrode, and an upper electrode covers the dielectric film. Thicknesses of the dielectric film at lower end portions of the lower electrode are thin but thick enough to make a leakage current value lower than a tolerable value thereof. At locations immediately below the lower electrode, the interlayer insulating film has portions whose thicknesses are larger than thicknesses of other portions thereof. The interlayer insulating film is such that, immediately below the regions of the dielectric film which are located at lower end portions of sides of the lower electrode and at which thicknesses of the dielectric film are very thin, the thicknesses of the interlayer insulating film are made larger than the rest thereof, or the dielectric film is such that lower end portions thereof are thin but thick enough to make a leakage current value lower than a tolerable value thereof. In this way, the occurrence of leakage current at the lower end portions of the lower electrode is suppressed.
摘要:
According to a method of fabricating a memory cell for a semiconductor integrated circuit, a lower electrode having a predetermined shape is formed on a semiconductor layer. A first insulating interlayer is formed on an entire surface of the semiconductor layer such that only a top surface of the lower electrode is exposed. A dielectric having a high dielectric constant is formed on the lower electrode and on the semiconductor layer. An upper electrode is formed on the dielectric having a high dielectric constant. The upper electrode constitutes a capacitor with the lower electrode through the dielectric.
摘要:
A liquid material arrangement method includes a first patter generating step, a dot deleting step and a liquid material arranging step. In the first pattern generating step, a first dot pattern is generated in which a first prescribed number of dots is set. In the dot deleting step, a second prescribed number of dots is deleted to generate a second dot pattern. In the liquid material arranging step, a liquid material is arranged in the prescribed region on the substrate by causing a nozzle and the substrate to scan in relative manner and discharging the liquid material based on the second dot pattern. In the dot deleting step, a dot indicator for each the first prescribed number of dots is determined based on discharge information of the nozzle, and the second prescribed number of dots is deleted based on the dot indicator.
摘要:
In a nozzle hole image recognition method for picturing a nozzle hole of a liquid droplet ejection head which is filled with a function liquid and then performing image recognition thereof, the nozzle hole is pictured synchronously with application, to the liquid droplet ejection head, of a driving waveform which causes single-period micromotion of a meniscus surface of the nozzle hole. Thus, it is possible to provide: the nozzle hole image recognition method in which the image of the nozzle hole is recognized at a good accuracy in a state in which the liquid droplet ejection head is filled with the function liquid and a position correction method of a liquid droplet ejection head using it; a nozzle hole inspection method; a nozzle hole image recognition apparatus; and a liquid droplet ejection apparatus equipped therewith.
摘要:
A liquid material arrangement method includes performing a first pattern generating step, a dot deleting step, and a liquid material arranging step. The first pattern generating step includes generating a first dot pattern in which a first prescribed number of dots is set according to the prescribed region. The dot deleting step includes deleting a second prescribed number of dots from the first prescribed number of dots to generate a second dot pattern. The liquid material arranging step includes arranging a liquid material in a prescribed region on a substrate by causing a nozzle and the substrate to scan in relative manner and discharging the liquid material from the nozzle based on the second dot pattern. The performing of the dot deleting step further includes deleting at least one prohibited dot with priority with the prohibited dot being determined based on discharge information of the nozzle determined in advance.
摘要:
An embodiment of the present invention is a method of fabricating a semiconductor device. The method comprises forming a film of bottom electrode material entirely over the dielectric film; etching the bottom electrode film to partially define a sidewall of each of bottom electrodes; forming a film of ferroelectric material on the remainder of the bottom electrode film and the exposed surface of the dielectric film; forming a film of top electrode material on the ferroelectric film; and etching the top electrode film, the ferroelectric film and the remainder of the bottom electrode film until the surface of the dielectric film is exposed to completely define the sidewall of each of the bottom electrodes.