摘要:
A method of manufacturing a semiconductor device which comprises a step of forming a first groove in a semiconductor layer, a step of filling the first groove with a first insulating film, a step of selectively etching the first insulating film in the first groove to form at least one second groove having a small width, and a step of filling the second groove with a second insulating film to form an isolation layer having a large width and substantially flush with the semiconductor layer.
摘要:
A method of manufacturing a semiconductor device which comprises a step of forming a first groove in a semiconductor layer, a step of filling the first groove with a first insulating film, a step of selectively etching the first insulating film in the first groove to form at least one second groove having a small width, and a step of filling the second groove with a second insulating film to form an isolation layer having a large width and substantially flush with the semiconductor layer.
摘要:
A method of manufacturing a semiconductor device which comprises a step of forming a first groove in a semiconductor layer, a step of filling the first groove with a first insulating film, a step of selectively etching the first insulating film in the first groove to form at least one second groove having a small width, and a step of filling the second groove with a second insulating film to form an isolation layer having a large width and substantially flush with the semiconductor layer.
摘要:
An antenna apparatus includes a first feeding point and a second feeding point provided at respective positions on an antenna element. The antenna element is excited through the first and second feeding points simultaneously so as to operate as a first antenna portion and a second antenna portion simultaneously, the first antenna portion and the second antenna portion correspond to the first and second feeding points, respectively. The antenna element further includes, between the first and second feeding points, an electromagnetic coupling adjuster for making an amount of isolation between the first and second antenna portions.
摘要:
A method manufacturing of a fluid dynamic bearing includes: forming a substantially linear groove having a length corresponding to a circumferential direction width of the dynamic pressure groove formed on the inner circumferential surface of a shaft housing hole portion, along the circumferential direction of a surface orthogonal to a first processing direction along the central axis direction of a work, by a byte that performs a micro alternating drive in a second processing direction orthogonal to the first processing direction; and extending the dynamic pressure groove that extends in the first processing direction by continuously forming the substantially linear grooves in the first processing direction by displacing the relative positions of the work and the byte in the first processing direction.
摘要:
A housing antenna is small enough in size so as to be accommodated in a mobile device. The antenna has a number of feeding points that allow the antenna to operate as a number of antenna elements. The antenna is capable of realizing high speed communication by increasing communication capacity.
摘要:
A controller of a MIMO antenna apparatus calculates a current transmission capacity based on signal levels detected by a signal level detector circuit. The controller calculates an estimated transmission capacity assuming that at least one of antenna elements currently connected to a MIMO modulator and demodulator circuit is changed to a further antenna element not connected to the MIMO modulator and demodulator circuit, based on the detected signal levels and degrees of electromagnetic coupling stored in a degree-of-coupling memory. The controller controls a switch circuit to connect the further antenna element to the MIMO modulator and demodulator circuit when the current transmission capacity becomes lower than the estimated transmission capacity.
摘要:
A MIMO antenna apparatus is provided with: an upper housing having slits; first feed points through which the upper housing itself is excited as first antennas; second feed points through which the slits are excited as second antennas; switch circuits, each of which is connected to one of the first feed points and one of the second feed points, and connects one of the two feed points to an A/D converter circuit-; a signal level detector circuit detecting signal levels of received radio signals; and a controller that controls the switches to change a feed point connected to the A/D converter circuit, when the detected signal level is less than or equal to a predetermined threshold value. The slits are located between the first antennas.
摘要:
An array antenna apparatus includes a first feeding element having a first feed point, a second feeding element having a second feed point, and a first parasitic element electrically connected to the respective first and second feeding elements. In a first frequency band, respective resonances in the feeding elements occur independent of each other, by eliminating electromagnetic mutual coupling between the feeding elements, and exciting the first feeding element through the first feed point as well as exciting the second feeding element through the second feed point. In a second frequency band lower than the first frequency band, a loop antenna having a certain electrical length is formed by the first and second feeding elements and the first parasitic element, and a resonance of the loop antenna substantially occurs by exciting the first feeding element through the first feed point.
摘要:
There is provide a mobile radio apparatus capable of suppressing a mismatching loss, and increasing a transmission/reception sensitivity by means of instantly and adaptively matching the impedance between the antenna and the transmission/reception circuit whatever situation a mobile radio apparatus, such as a mobile phone or the like, may be. In a mobile radio apparatus (1), when starting control of the matching circuit (102), a control section (105) evaluates an initial chromosome stored in a storage section (106), and if there is an initial chromosome for providing an impedance matching, controls the matching circuit (102) so as to have a load value corresponding to this initial chromosome. If there is no initial chromosome for providing the impedance matching, the control section (105) evolves the initial chromosome with a genetic algorithm, derives a chromosome for providing the impedance matching, and controls the matching circuit (102) so as to have a load value corresponding to the derived chromosome.