摘要:
A silicide film of oxidized transition metal 3 formed on a transparent substrate 1 has a low reflectance and in consequence, a high resolution can be obtained and dry etching thereof can be easily done. In addition, since said silicide film 3 has good adhesion to a transparent substrate 1, file patterns therein do not peel off at the time of rinsing the mask.
摘要:
A photomask includes a transparent substrate, a light shielding film formed on the substrate, and a transparent film formed on the light shielding film and the substrate. The light shielding film has a bottom in contact with the substrate, a side face at an acute angle to the bottom, and an upper face in parallel with the bottom and at an obtuse angle to the side face. According to the light shielding film having such a configuration, a phase shift portion of a predetermined width and thickness can be formed accurately in the periphery of the light shielding film. The inferior influence of reflecting light with respect to the pattern resolution can be reduced if films of low reflectance are provided in the upper and lower portions of the light shielding film to improve the pattern resolution. The method of manufacturing this photomask includes the steps of patterning the light shielding film having a trapezoid configuration in which the upper base is shorter than the lower base on a transparent substrate, and forming a transparent film at a temperature of not more than 250.degree. C. on the substrate and the light shielding film. The thermal distortion in the light shielding film can be suppressed effectively by the formation of a transparent film.
摘要:
A photomask manufacturing process including a step of forming metal silicide film on a transparent silica glass substrate. A resist is applied onto the metal silicide film and then a patterning mask is provided by light or electron beam, followed by developing step. Exposed portions of the metal silicide film is etched away using a dry etching process.
摘要:
A photomask manufacturing process including a step of forming metal silicide film on a transparent silica glass substrate. A resist is applied onto the metal silicide film and then a patterning mask is provided by light or electron beam, followed by developing step. Exposed portions of the metal silicide film is etched away using a dry etching process.
摘要:
A transition metal silicide film 3 is formed on a transparent substrate 1, and an oxidized transition metal silicide film 4 is formed on said transition metal silicide film 3. Dry etching can be easily applied to the transition metal silicide film 3 and the oxidized transition metal silicide film 4. Since the silicified metal films have good adhesion to the transparent substrate 1, the fine patterns can hardly be detached at the time of mask rinsing. In addition, the oxidized transition metal silicide film 4 has a low reflection factor, which prevents the lowering of the resolution.
摘要:
In manufacturing a photomask, a molybdenum silicide film is formed on the main surface of a quartz substrate. A resist film having a pattern is, then, formed on the molybdenum silicide film. Thereafter, the molybdenum silicide film is etched using the resist film as a mask. The etching is effected in a plasma generated in a mixed gas containing nitrogen gas in CF.sub.4 gas.
摘要:
A silicide film of oxidized transition metal 3 formed on a transparent substrate 1 has a low reflectance and in consequence, a high resolution can be obtained and dry etching thereof can be easily done. In addition, since said silicide film 3 has good adhesion to a transparent substrate 1, fine patterns therein do not peel off at the time of rinsing the mask.
摘要:
A second light transmit portion of a phase shift mask is formed of a molybdenum silicide nitride oxide or a molybdenum silicide oxide a chromium nitride oxide, or a chromium oxide, or a chromium carbide nitride oxide film converting a phase of transmitted exposure light by 180.degree. and having the transmittance of 5-40%. In the manufacturing method of the second light transmit portion, a molybdenum silicide nitride oxide film or a molybdenum silicide oxide film a chromium nitride oxide film, or a chromium oxide film, or a carbide nitride oxide film is formed by a sputtering method. Consequently, with a conventional sputtering apparatus, the second light transmit portion can be formed, and additionally, etching process of the phase shifter portion is required only once, so that probabilities of defects and errors in the manufacturing process can be decreased.
摘要:
A second light transmit portion of a phase shift mask is formed of a molybdenum silicide nitride oxide or a molybdenum silicide oxide a chromium nitride oxide, or a chromium oxide, or a chromium carbide nitride oxide film converting a phase of transmitted exposure light by 180.degree. and having the transmittance of 5-40%. In the manufacturing method of the second light transmit portion, a molybdenum silicide nitride oxide film or a molybdenum silicide oxide film a chromium nitride oxide film, or a chromium oxide film, or a carbide nitride oxide film is formed by a sputtering method. Consequently, with a conventional sputtering apparatus, the second light transmit portion can be formed, and additionally, etching process of the phase shifter portion is required only once, so that probabilities of defects and errors in the manufacturing process can be decreased.
摘要:
The present invention is mainly directed to provision of a method of producing a highly precise resist pattern, even when a high energy beam is used. Resist containing a base resin including a hydroxyl group, an acid generating agent irradiated with radiation for generating sulfonic acid, and a cross linking agent reacting with the hydroxyl group of the base resin by the catalytic action of the proton of the sulfonic acid thereby cross linking said base resin is applied onto a substrate. The resist is irradiated selectively with radiation, whereby the resist is divided into the exposed part and the non exposed part and the sulfonic acid is generated in the resist of the exposed part. The resist is heated to a first temperature so as to cross link the irradiated part of the resist. The resist is heated to a second temperature and exposed in an atmosphere of a silylating agent, and the surface of the exposed part of the resist is silylated. The resist is dry-developed with oxygen plasma.