摘要:
A separable tow of elongated polymeric filaments comprises a plurality of distinct sub-tows lightly and individually and separably joined, as by light crimping together along their edges or, if uncrimped, joined by presence of moisture, and capable of being packed into a container and later removed and separated. The filaments are preferably acrylic and have a total fineness of about 300,00-1,500,000 denier and the sub-tows each of which has a total fineness of about 50,000-250,000 denier, with a filament fineness of about 1-2 denier, and each sub-tow has a degree of entanglement of about 10-40 m−1 as measured by the hook drop test. The separable tow is made of a plurality of sub-tows, after separately drawing the sub-tows and subsequently removably joining the sub-tows into a single tow.
摘要:
A separable tow of elongated polymeric filaments comprises a plurality of distinct sub-tows lightly and individually and separably joined, as by light crimping together along their edges or, if uncrimped, joined by presence of moisture, and capable of being packed into a container and later removed and separated. The filaments are preferably acrylic and have a total fineness of about 300,00-1,500,000 denier and the sub-tows each of which has a total fineness of about 50,000-250,000 denier, with a filament fineness of about 1-2 denier, and each sub-tow has a degree of entanglement of about 10-40 m−1 as measured by the hook drop test. The separable tow is made of a plurality of sub-tows, after separately drawing the sub-tows and subsequently removably joining the sub-tows into a single tow.
摘要:
A heat treatment furnace for fiber for heat-treating a fiber bundle (yarn) formed of many continuous filaments in hot gas while running the yarn. The heat treatment furnace has a plurality of heat treatment chambers provided in a furnace body. The temperature in each individual heat treatment chamber is independently adjusted to a temperature which is different from the temperatures in the other heat treatment chambers. Thereby, the heat treatment furnace can be made small and is able to heat-treat fiber efficiently.This heat treatment furnace is useful, particularly, as a heat treatment furnace (an oxidizing heat treatment furnace, or a oxidizing furnace) for producing an oxidized fiber needed to produce a carbon fiber. A polyacrylonitrile-based fiber bundle (yarn), that is a precursor fiber bundle for producing an oxidized fiber, passes through a zigzag yarn path, and passes through the heat treatment furnaces, in each of which temperature is independently adjusted to a temperature that is different from the temperatures in the other furnaces. An oxidized fiber bundle (yarn) is thereby produced.The zigzag yarn path in the heat treatment chambers for the oxidizing heat treatment is established by a combination of a plurality of yarn guide rollers provided outside the furnace body. Each yarn guide roller has, on its peripheral surface, a yarn guide groove for guiding a yarn. The yarn guide grooves have a specific cross-sectional shape whereby the cross-sectional shape of the yarn to be supplied into the heat treatment chambers for the oxidizing heat treatment is adjusted into a flat generally rectangular shape. Heat accumulation in the yarn being heat-treated is thereby reduced.
摘要:
By using carbon fibers having a fineness of 25,000 deniers or more, the present invention provides a carbon fiber package including a cheese winding package or a coreless package in which an outside diameter of the package, a diameter of a bobbin or an inside diameter of the package, and a winding width are regulated in the specific ranges, a square-end type package in which a yarn width per fineness, wind angles at the start of winding and at the end of winding, and shifting of the yarn are regulated in the specific ranges, and a carbon fiber packed member in which an average bulk density is regulated in a specific range. Those carbon fiber packages and the carbon fiber packed member solve troubles and inconveniences during use, and also packages which have a high winding density and which do not break easily can be obtained.
摘要:
A heat treatment furnace for fiber for heat-treating a fiber bundle (yarn) formed of many continuous filaments in hot gas while running the yarn. The heat treatment furnace has a plurality of heat treatment chambers provided in a furnace body. The temperature in each individual heat treatment chamber is independently adjusted to a temperature which is different from the temperatures in the other heat treatment chambers. Thereby, the heat treatment furnace can be made small and is able to heat-treat fiber efficiently.This heat treatment furnace is useful, particularly, as a heat treatment furnace (an oxidizing heat treatment furnace, or a oxidizing furnace) for producing an oxidized fiber needed to produce a carbon fiber. A polyacrylonitrile-based fiber bundle (yarn), that is a precursor fiber bundle for producing an oxidized fiber, passes through a zigzag yarn path, and passes through the heat treatment furnaces, in each of which temperature is independently adjusted to a temperature that is different from the temperatures in the other furnaces. An oxidized fiber bundle (yarn) is thereby produced.The zigzag yarn path in the heat treatment chambers for the oxidizing heat treatment is established by a combination of a plurality of yarn guide rollers provided outside the furnace body. Each yarn guide roller has, on its peripheral surface, a yarn guide groove for guiding a yarn. The yarn guide grooves have a specific cross-sectional shape whereby the cross-sectional shape of the yarn to be supplied into the heat treatment chambers for the oxidizing heat treatment is adjusted into a flat generally rectangular shape. Heat accumulation in the yarn being heat-treated is thereby reduced.
摘要:
A thin film balun that can be made smaller and thinner while maintaining required balun characteristics is provided. A thin film balun 1 includes: an unbalanced transmission line UL including a first coil portion C1 and a second coil portion C2; a balanced transmission line BL including a third coil portion C3 and a fourth coil portion C4 that are positioned facing and magnetically coupled to the first coil portion C1 and the second coil portion C2 respectively; an unbalanced terminal UT connected to the first coil portion C1; a ground terminal G connected to the second coil portion C2 via a C component D; and an electrode D2 connected to the ground terminal G and facing a part of the second coil portion C2. The C component D is formed by the electrode D2 and the part D1 of the second coil portion C2.
摘要:
A multilayer ceramic electronic component comprising an element body in which a dielectric layer and an internal electrode layer are stacked. The dielectric layer is constituted from a dielectric ceramic composition including; a compound having a perovskite structure expressed by a formula of ABO3 (A is at least one selected from Ba, Ca, and Sr; B is at least one selected from Ti, Zr, and Hf); an oxide of Mg; an oxide of rare earth elements including Sc and Y; and an oxide including Si. The dielectric ceramic composition comprises a plurality of dielectric particles and a grain boundary present in between the dielectric particles. In the grain boundary, when content ratios of Mg and Si are set to D(Mg) and D(Si) respectively, D(Mg) is 0.2 to 1.8 wt % in terms of MgO, and D(Si) is 0.4 to 8.0 wt % in terms of SiO2.
摘要:
Disclosed is a method for producing carbon fibers which exhibit excellent adhesion to a matrix resin and have excellent processability. Specifically disclosed is a method for producing a sizing agent-coated carbon fibers, wherein at least one kind of sizing agent that is selected from the group consisting of sizing agents (a), (b) and (c) described below is used for coating, in each of said sizing agents a bi- or higher functional epoxy compound (A1) and/or an epoxy compound (A2) being used as a component (A), and said epoxy compound (A2) having a mono- or higher functional epoxy group and at least one functional group that is selected from among a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group and a sulfo group. The method for producing a sizing agent-coated carbon fibers is characterized in that the sizing agent is applied to carbon fibers and the resulting is subjected to a heat treatment within the temperature range of 160-260° C. for 30-600 seconds. (a) A sizing agent which is obtained by blending at least 0.1-25 parts by mass of a tertiary amine compound and/or tertiary amine salt (B1) having a molecular weight of 100 g/mol or more per 100 parts by mass of the component (A), said tertiary amine compound and/or tertiary amine salt (B1) being used as a component (B). (b) A sizing agent which is obtained by blending at least 0.1-25 parts by mass of a quaternary ammonium salt (B2) having a cationic moiety represented by general formula (I) or (II) per 100 parts by mass of the component (A), said quaternary ammonium salt (B2) being used as a component (B). (In the formulae, R1-R5 each represents a hydrocarbon group having 1-22 carbon atoms, a group that contains a hydrocarbon having 1-22 carbon atoms and an ether structure, a group that contains a hydrocarbon having 1-22 carbon atoms and an ester structure, or a group that contains a hydrocarbon having 1-22 carbon atoms and a hydroxyl group; and R6 and R7 each represents a hydrogen atom, a hydrocarbon group having 1-8 carbon atoms, a group that contains a hydrocarbon having 1-8 carbon atoms and an ether structure, or a group that contains a hydrocarbon having 1-8 carbon atoms and an ester structure.) (c) A sizing agent which is obtained by blending at least 0.1-25 parts by mass of a quaternary phosphonium salt and/or phosphine compound (B3) per 100 parts by mass of the component (A), said quaternary phosphonium salt and/or phosphine compound (B3) being used as a component (B).
摘要:
A process for producing polyacrylonitrile-base precursor fibers for production of carbon fibers, which comprises spinning a spinning dope containing 10 to 25 wt % of a polyacrylonitrile-base polymer having an intrinsic viscosity of 2.0 to 10.0 by extruding the spinning dope from a spinneret by a wet spinning or a dry wet spinning method, drying and heat-treating fibers obtained by the spinning, and then steam drawing the resulting fibers, wherein the linear extrusion rate of the polyacrylonitrile-base polymer from the spinneret is 2 to 15 m/min.
摘要翻译:一种制造用于生产碳纤维的聚丙烯腈基前体纤维的方法,其包括通过将纺丝原液从喷丝头挤出而纺丝纺丝原液,该纺丝原液含有10-25重量%的特性粘度为2.0至10.0的聚丙烯腈基聚合物 湿式纺丝或干式湿式纺丝方法,通过纺丝得到的纤维的干燥和热处理,然后对所得纤维进行蒸汽拉伸,其中来自喷丝板的聚丙烯腈基聚合物的线性挤出速率为2〜15m / min 。
摘要:
In a sheet stacking apparatus, a pair of side members includes a pair of lower side members which is provided with an approximately same distance therebetween as a width of a planographic printing plate and limits a movement in the planographic printing plate width direction; and a pair of upper side members which are provided above the pair of lower side members, each of which is provided with a movable section movable in the planographic printing plate width direction, and on which tapered surfaces are formed facing each other in a generally V shape. The distance between the pair of upper side members is controlled by driving the movable sections of the pair of upper side members so as to prevent quality degradation caused by a thrown-in sheet scratching a stacked sheet.