摘要:
A method for fabricating diamond nanopillars includes forming a diamond film on a substrate, depositing a metal mask layer on the diamond film, and etching the diamond film coated with the metal mask layer to form diamond nanopillars below the mask layer. The method may also comprise forming diamond nuclei on the substrate prior to forming the diamond film. Typically, a semiconductor substrate, an insulating substrate, a metal substrate, or an alloy substrate is used.
摘要:
A method for fabricating diamond nanopillars includes forming a diamond film on a substrate, depositing a metal mask layer on the diamond film, and etching the diamond film coated with the metal mask layer to form diamond nanopillars below the mask layer. The method may also comprise forming diamond nuclei on the substrate prior to forming the diamond film. Typically, a semiconductor substrate, an insulating substrate, a metal substrate, or an alloy substrate is used.
摘要:
A conical structure of cubic Boron Nitride (cBN) is formed on a diamond layered substrate. A method of forming the cBN structure includes steps of (a) forming diamond nuclei on a substrate, (b) growing a layer of diamond film on the substrate, (c) depositing a cBN film on said diamond layer, (d) pre-depositing nanoscale etching masks on the cBN film, and (e) etching the deposited cBN film. In particular, though not exclusively, the cubic Boron Nitride structure has great potential applications in probe analytical and testing techniques including scanning probe microscopy (SPM) and nanoindentation, nanomechanics and nanomachining in progressing microelectromechanical system (MEMS) and nanoelectyromechanical system (NEMS) devices, field electron emission, vacuum microelectronic devices, sensors and different electrode systems including those used in electrochemistry.
摘要:
A surface acoustic wave (SAW) device which is made of cBN/diamond composite structures and the fabrication method are disclosed. In the SAW device based on cubic boron nitride and diamond composite structures, the diamond hard layer includes randomly-oriented polycrystalline diamond (poly-D), oriented (heteroepitaxial) diamond, single-crystal diamond wafers and nanocrystalline diamond (nano-D) films. The cBN film with a sound velocity close to that of diamond serves as the piezoelectric layer, which was directly deposited on diamond hard layer without any soft sp2-BN incubation layer by ion assisted physical vapor deposition (PVD) and plasma-enhanced (or ion assisted) chemical vapor deposition (PECVD). Due to the high sound velocity and the low velocity dispersion between the cBN and diamond layered materials, the present SAW device based on cubic boron nitride and diamond composite structures can improve the device performance and operate at ultra-high frequency range.
摘要:
A conical structure of cubic Boron Nitride (cBN) is formed on a diamond layered substrate. A method of forming the cBN structure includes steps of (a) forming diamond nuclei on a substrate, (b) growing a layer of diamond film on the substrate, (c) depositing a cBN film on said diamond layer, (d) pre-depositing nanoscale etching masks on the the cBN film, and (e) etching the the deposited cBN film. In particular, though not exclusively, the cubic Boron Nitride structure has great potential applications in probe analytical and testing techniques including scanning probe microscopy (SPM) and nanoindentation, nanomechanics and nanomachining in progressing microelectromechanical system (MEMS) and nanoelectyromechanical system (NEMS) devices, field electron emission, vacuum microelectronic devices, sensors and different electrode systems including those used in electrochemistry.
摘要:
Cubic boron nitride/diamond (cBND) composite films with excellent adherence to various substrates and their fabrication method are disclosed. The cBND composite confining cBN can be prepared without any amorphous/turbostratic BN (aBN/tBN) incubation layers. The cBND composite is established on the compatibility of structural and physical properties of two superior materials: cBN on top and diamond beneath. The underlying diamond is adapted to the substrate of choice using a variety of methods which may include prescratching the substrates, bias enhanced nucleation, etching for depleting undesirable chemical elements, construction of buffer layers and gradient buffer layers for the isolation of undesirable chemical elements or/and adaptation of physical properties. The diamond nuclei are preferably formed either by bias-enhanced nucleation or by pre-scratching the substrate prior to nucleation. The cBN films in cBND composites of the present invention can grow directly on the underlaying diamond films in heteroepitaxial relationships.
摘要:
A multilayer coating (MLC) is composed of two chemically different layered nanocrystalline materials, nanodiamond (nanoD) and nano-cubic boron nitride (nono-cBN). The structure of the MLC and fabrication sequence of layered structure are disclosed. The base layer is preferably nanoD and is the first deposited layer serving as an accommodation layer on a pretreated substrate. It can be designed with a larger thickness whereas subsequent alternate nano-cBN and nanoD layers are typically prepared with a thickness of 2 to 100 nm. The thickness of these layers can be engineered for a specific use. The deposition of the nanoD layer, by either cold or thermal plasma CVD, is preceded by diamond nucleation on a pretreated and/or precoated substrate, which has the capacity to accommodate the MLC and provides excellent adhesion. Nano-cBN layers are directly grown on nanodiamond crystallites using ion-assisted physical vapor deposition (PVD) and ion-assisted plasma enhanced chemical vapor deposition (PECVD), again followed by nanodiamond deposition using CVD methods in cycles until the intended number of layers of the MLC is obtained.
摘要:
Cubic boron nitride/diamond (cBND) composite films with excellent adherence to various substrates and their fabrication method are disclosed. The cBND composite confining cBN can be prepared without any amorphous/turbostratic BN (aBN/tBN) incubation layers. The cBND composite is established on the compatibility of structural and physical properties of two superior materials: cBN on top and diamond beneath. The underlying diamond is adapted to the substrate of choice using a variety of methods which may include prescratching the substrates, bias enhanced nucleation, etching for depleting undesirable chemical elements, construction of buffer layers and gradient buffer layers for the isolation of undesirable chemical elements or/and adaptation of physical properties. The diamond nuclei are preferably formed either by bias-enhanced nucleation or by pre-scratching the substrate prior to nucleation. The cBN films in cBND composites of the present invention can grow directly on the underlaying diamond films in heteroepitaxial relationships.
摘要:
A multilayer coating (MLC) is composed of two chemically different layered nanocrystalline materials, nanodiamond (nanoD) and nano-cubic boron nitride (nono-cBN). The structure of the MLC and fabrication sequence of layered structure are disclosed. The base layer is preferably nanoD and is the first deposited layer serving as an accommodation layer on a pretreated substrate. It can be designed with a larger thickness whereas subsequent alternate nano-cBN and nanoD layers are typically prepared with a thickness of 2 to 100 nm. The thickness of these layers can be engineered for a specific use. The deposition of the nanoD layer, by either cold or thermal plasma CVD, is preceded by diamond nucleation on a pretreated and/or precoated substrate, which has the capacity to accommodate the MLC and provides excellent adhesion. Nano-cBN layers are directly grown on nanodiamond crystallites using ion-assisted physical vapor deposition (PVD) and ion-assisted plasma enhanced chemical vapor deposition (PECVD), again followed by nanodiamond deposition using CVD methods in cycles until the intended number of layers of the MLC is obtained.
摘要:
The present invention deals with the generation of sharp single crystal diamond tips and the arrays of these tips, and their fabrication technology. The invention combines the deposition of synthetic diamond films with reactive etching processes. Upon the diamond orientation prepared and reactive etching environment with considerable directivity of ions, single crystal diamond tips with different apical angles can be fabricated. Very sharp diamond tips with an apical angle of no more than about 28° and a tip radius smaller than 50 nm are fabricated on pyramidal-shaped [001]-textured diamond films by subsequent reactive etching., The technology is based on selective etching of sp2- and sp3- hybridized carbons by the activated constituents of an etching environment, in particular based on atomic hydrogen, in a way similar to ion bombardment, which contributes to overall etching and local conversion of diamond to graphitic phase promoting further etching with chemically activated species. This novel method is capable of forming diamond tip arrays over large areas with great uniformity and high reproducibility. The diamond tips prepared are single diamond crystals with their [001] axes parallel each other and normal to the substrate surface. The invented technology enables the control of the apical angle, radius and density of the diamond tips.