摘要:
A display device comprising a plurality of pixels (26), a light source (23), and addressing means (24, 25) for coupling a selected pixel to said light source to thereby emit light, wherein the addressing means (24, 25) are arranged to address each pixel using pulse-width modulation (PWM). Further, the display comprises means (20) for amplitude modulating the intensity of said light source (23). The combination of the two modulations generates an exponentially distributed emitted light intensity, enabling proper gray scale rendering for a limited resolution in the time domain.
摘要:
A display device comprising a light guide (12), a front plate (14), and an intermediate electromechanically operable foil (16). Two electrode layers (22, 23) are arranged on either side of the foil (16) to induce electrostatic forces on the foil (16) and to bring selected portions of the foil into contact with the light guide (12), thereby extracting light from the light guide (12). The second electrode layer (22) is arranged on the opposite side of the light guide (12) with reference to the foil (16), and separated from the light guide (12) by means of a refractive layer (28). As no electrode layer is required on the light guide itself, the light path of rays extracted from the light guide is cleaner, and the absorption of light is reduced. The light guide can have a thickness such that the light extracted from the light guide per unit length is sufficient to allow for line-at-a-time addressing
摘要:
The present invention relates to an optical imaging system. The system comprises at least one light source for producing at least one light beam (10). Beam shaping optics (11) arranged to expand the at least one light beam (10) in one direction. At le',ast one one-dimensional array of beam switches (1) is arranged to receive the expanded at least one light beam (10) and modulate it to form a line image. A projection lens (12) is provided for projecting said line image. A slow mirror scanner (13) is arranged to scan consecutive line images to form a two-dimensional image.
摘要:
A projection system is described for displaying image information, comprising an illumination system for generating a light beam, a scanning device comprising a mirror for scanning the generated light beam to form an image on a screen, and a scan angle enlarger cooperating with the scanning device for enlarging a scan angle of the generated light beam. The scan angle enlarger comprises a reflective polarizer, a quarter-wave plate and a mirror arranged to reflect the light beam at least once between the reflective polarizer and the mirror via the quarter-wave plate. This arrangement allows a compact assembly of the projection system for use in small portable devices such as mobile phones and PDAs.
摘要:
The invention relates to a projection display device (10, 40, 60, 70) for casting an image onto a projection screen (26, 56, 86). The device comprises a spatial light modulator (16, 46, 62, 76) including an array of light modulating elements (18, 48, 78), and a light source (12, 42, 72) arranged to illuminate the modulator. The device is characterized in that each light modulating element of the modulator is illuminated by light diverging in a least one dimension, which light is spatially modulated by the modulator and cast onto the projection screen. An advantage with the projection display device according to the invention is that it can be realized in a very compact fashion. The invention further relates to a hand held device comprising such projection display device.
摘要:
A two dimensional scanning device, for use in a projecting display, comprising a surface (53) suspended by at least two torsion elements (55) defining a torsion axis (B), and a first actuator (60, 61) for pivoting said surface (53) around said torsion axis (B). The scanner further comprises a cantilever beam (51) having one end fixed in relation to said surface and an opposite end arranged to bend around a bending axis (A) non-parallel to said torsion axis (B). The cantilever beam (51) is provided with a reflective surface and a second actuator (58) is arranged to bring said cantilever beam to oscillate at its resonance frequency. The combination of a slow torsion scanner and a faster cantilever scanner 10 provides a two dimensional scanner capable of scanning a laser beam in a raster pattern to project an image.
摘要:
The display panel (21) comprises a light guide (2), a second plate (4) and a movable element (3) between both plates for locally decoupling light out of the light guide (2). Voltages, applied to electrodes (5,6 resp. 25), associated with the light guide (2), the second plate (4) and the movable element (3), locally bring the movable element (3) into 5 contact with the light guide plate (2) or the second plate (4). If, between the light guide (2) and the first electrodes (5) a layer (51) is present with a second refractive index being smaller than the first refractive index of the light guide (2), and the light guide (2) is positioned between the first electrodes (5) and the movable element (3), absorption of the light transported through the light guide plate (2) is reduced, providing a display panel (21) with 10 improved power efficiency.
摘要:
A full color high brightness reflective display (200, 250, 300, 350) is formed from individual multifaced pyramid-like reflectors (400, 450, 500, 600, 725, 800). Each face (410, 420, 460, 470 510, 520, 610, 620, 730, 740, 810, 820) of the reflector specularly reflects two of the three primary colors of incident light (461, 481, 581, 661, 781, 861), and can be controlled to either reflect, diffusely or specularly, or absorb the other primary color, thereby controlling a color of reflected light (462, 482, 582, 662, 782, 862). A liquid crystal layer (415, 425, 465, 475) may be used at each face, with a polarization filter (480) at the entrance to the reflector, or combined with the layer. An electro wetting cell (514, 524) or an electrophoretic layer (615, 625) may also be used. A deposition layer formed by reversible metal deposition may be used. A movable, dynamic foil mechanism (850) may also be used. The display may be made up of multiple reflectors (210, 220, 260, 270, 310, 320, 360, 370) arranged in a repeating pattern.
摘要:
The invention relates to a field emission device, and a method of manufacturing same. The field emission device comprises a gate electrode (140, 340, 440) which is provided with a pattern of electron passing apertures (135, 335, 435). The gate electrode (140, 340, 440) is arranged near particles (110, 310, 410) distributed on a substrate (125, 325, 425), at least a part of said particles (110, 310, 410) being arranged for emitting electrons. By means of the gate electrode (140, 340, 440), an electric field is applicable by means of which emitting particles emit electrons. Particularly good electron emission is obtained, because the pattern of apertures (135, 335, 435) is similar to the distribution of particles (110, 310, 410) on the substrate. This is achieved by means of the manufacturing method, in which the particles (110, 310, 410) are used in an illumination step to mask regions (155, 355) of a photo layer (150, 352). Thus, a pattern is obtained in the photo layer (150, 352), which can be used to obtain a similar pattern in the gate electrode (140, 340, 440) with relative case.
摘要:
A three electrode PDP comprises a scan driver (SD) which supplies a substantially sine wave shaped voltage (VS) between first and the second scan electrodes (SEi, CEi), an amplitude of the substantially sine wave shaped voltage (VS) being large enough to sustain plasma cells (PCij), but being too small to ignite the plasma cells (PCij). A data driver (DD) supplies a substantially pulse shaped voltage (VD) to the data electrodes (DEi) for controlling an amount of light produced by the plasma cells (PCij). The sine wave shaped voltage may have a predetermined frequency such that more than one stable light output level is obtained.