摘要:
A cushion member for a user interface device is provided. The cushion member is structured to provide a load distribution functionality responsive to the cushion member being donned by the user, wherein at least a portion of the cushion member has a local stiffness of less than or equal to 100 kPa/mm responsive to a stress increase on the cushion member of 1 kPa-15 kPa.
摘要:
A cushion member for a user interface device is provided. The cushion member is structured to provide a load distribution functionality responsive to the cushion member being donned by the user, wherein at least a portion of the cushion member has a local stiffness of less than or equal to 100 kPa/mm responsive to a stress increase on the cushion member of 1 kPa-15 kPa.
摘要:
The present invention relates to determining or measuring a biological, physical or physiological parameter of an object (10) by a sensor (2). It may be beneficial to constantly monitor or determine a biological, physical or physiological parameter of an object (10) by a sensor (2), subsequently allowing for a preferred removal of the sensor (2) from object (10) when the monitoring is no longer required. Accordingly, a sensor (2) is provided, e.g. a flow sensor, employing a degradable adhesive (8) for attachment of the sensor (2) to the object (10). The degradable adhesive (8) may be degradable e.g. by time, by exposure to a certain measure, e.g. induced heat, or substance for detaching the sensor (2) from the object (10) for subsequent removal of the sensor (2).
摘要:
A device and method determining or measuring a biological, physical or physiological parameter of an object includes a flexible carrier configured to be placed in a vicinity of the object; and at least one a sensor element attached to the flexible carrier and configured to determine at least one biological, physical or physiological parameter. In addition, a heating element is attached to the flexible carrier and configured to provide heat to the object; and a degradable adhesive is arranged on the flexible carrier adjacent to the heating element and configured to at least temporally affix the flexible carrier to the object.
摘要:
The invention relates to an apparatus (102) capable of accurately monitoring whether or not a distal end of a tube is positioned inside a blood vessel. The apparatus comprises a heating element (106) configured for heating the distal end and a sensor arrangement (110) for generating a measurement signal (114) indicative for heat transferred by an exterior of the distal end. For the purpose of comparing the measurement signal (114) with a reference level, the apparatus furthermore comprises a comparator arrangement (116). Herein the reference level equals a value attained by the measurement signal (114) in response to a minimum flow velocity in the blood vessel. The invention furthermore relates to a system (102) for exchanging a liquid with a mammal via a blood vessel. The system comprises a tube provided with the apparatus according to the invention.
摘要:
An apparatus for monitoring whether or not a distal end of a tube is positioned inside a blood vessel includes a heating element configured to heat the tube distal end, and a sensor arrangement configured to generate a measurement signal indicative for heat transferred by exterior of the distal end. The apparatus further includes a comparator configured to compare the measurement signal with a reference level. The reference level equals a value attained by the measurement signal in response to a minimum flow velocity in the blood vessel. Further, a system is configured to exchange a liquid with a mammal via a blood vessel. The system includes the apparatus having the tube.
摘要:
The invention relates to a system (102) for measuring a velocity of a fluid (104) flowing through a flow channel (106). The system comprises a heating element (108) configured for generating a thermal marker in the fluid (104) in response to a predetermined time-varying level of power provided to the heating element (108). The system (102) furthermore comprises a sensor arrangement (110) for generating a measurement signal (112) indicative for the velocity of the fluid (104) flowing through the channel (106). Herein, the sensor arrangement (110) is configured for measuring a time series of the primary temperature (114) of the fluid (104) at a predetermined primary location. The primary location and the heating element (108) are situated on an axis having at least a component parallel to the longitudinal axis (119) of the flow channel (106). The measurement signal (112) is based on the maximum value (120) of the time series of time series of the primary temperature (114) in response to the thermal marker.
摘要:
An aerosol delivery system (e.g., MDI or nebulizer for delivering aerosolized medication to a patient) includes a temperature sensor (10) in an aerosol output pathway of the system. A controller (600) determines that an aerosol generator of the system has released aerosol when the sensor senses a predetermined temperature change in the pathway. The temperature sensor may also comprise a thermal flow sensor that includes a heater and upstream and downstream temperature sensors. The controller compares the upstream and downstream temperatures to determine the presence, direction, and/or magnitude of fluid flow in the pathway. The controller may use the aerosol detection and/or flow detection to monitor compliance with desired use of the system and/or provide real-time instructions to a user for proper use of the system. The controller may record the aerosolization and flow data for later analysis.
摘要:
An aerosol delivery system (e.g., MDI or nebulizer for delivering aerosolized medication to a patient) includes a temperature sensor in an aerosol output pathway of the system. A controller determines that an aerosol generator of the system has released aerosol when the sensor senses a predetermined temperature change in the pathway. The temperature sensor may also comprise a thermal flow sensor that includes a heater and upstream and downstream temperature sensors. The controller compares the upstream and downstream temperatures to determine the presence, direction, and/or magnitude of fluid flow in the pathway. The controller may use the aerosol detection and/or flow detection to monitor compliance with desired use of the system and/or provide real-time instructions to a user for proper use of the system. The controller may record the aerosolization and flow data for later analysis.
摘要:
The invention relates to a system (102) for measuring a velocity of a fluid (104) flowing through a flow channel (106). The system comprises a heating element (108) configured for generating a thermal marker in the fluid (104) in response to a predetermined time-varying level of power provided to the heating element (108). The system (102) furthermore comprises a sensor arrangement (110) for generating a measurement signal (112) indicative for the velocity of the fluid (104) flowing through the channel (106). Herein, the sensor arrangement (110) is configured for measuring a time series of the primary temperature (114) of the fluid (104) at a predetermined primary location. The primary location and the heating element (108) are situated on an axis having at least a component parallel to the longitudinal axis (119) of the flow channel (106). The measurement signal (112) is based on the maximum value (120) of the time series of time series of the primary temperature (114) in response to the thermal marker.