摘要:
Methods of assuring that a representative formation and/or fluid sample of a subterranean reservoir is obtained are provided. One method of validating a reservoir fluid sample obtained from a wellbore includes the steps of acquiring a reservoir fluid sample in the wellbore; measuring a property of the fluid sample downhole with a technique to obtain a measured downhole fluid property; replicating the measuring technique used to obtain the measured downhole fluid property to obtain at a remote location from the wellbore with a technique to obtain at least one measured remote location fluid property; validating the fluid sample through comparison of the measured downhole fluid property and the at least one measured remote location fluid property.
摘要:
A method of assuring the collection of reliable and quality fluid sample includes the steps of acquiring a fluid sample at a point of acquisition, analyzing physical and chemical properties of the fluid sample at the point of acquisition; recording the point of acquisition sample properties in an electronic database archive, analyzing physical and chemical properties of the fluid sample at a location remote from the point of acquisition, recording the remote location sample properties in the archive, validating the fluid sample through comparison of the point of acquisition sample properties and the remote location sample properties and recording the validated sample properties in the archive.
摘要:
Methods and apparatus to change the mobility of formation fluids using thermal and non-thermal stimulation are described. An example apparatus to simultaneously provide thermal and non-thermal stimulation to change a mobility of a fluid in a subsurface formation includes one or more containers to hold one or more reactants. Additionally, the example apparatus includes a reactor to initiate a chemical reaction with at least one of the reactants. Further, the example apparatus includes an injector to inject a product of the chemical reaction into a formation. The product of the chemical reaction includes heat and a gaseous diluent to change a mobility of a fluid in a subsurface formation.
摘要:
Methods and apparatus that change the mobility of formation fluids using thermal and non-thermal stimulation including, an example apparatus to simultaneously provide thermal and non-thermal stimulation to change a mobility of a fluid in a subsurface formation includes one or more containers to hold one or more reactants. Additionally, the example apparatus includes a reactor to initiate a chemical reaction with at least one of the reactants. Further, the example apparatus includes an injector to inject a product of the chemical reaction into a formation. The product of the chemical reaction includes heat and a gaseous diluent to change a mobility of a fluid in a subsurface formation.
摘要:
Techniques for separating downhole fluid from a wellbore penetrating a subterranean formation are provided. These techniques may involve a cyclone separator having a housing with an intake for receiving the downhole fluid and at least one outlet, a cyclone section for rotating the downhole fluid, and an isolation plate positioned below the cyclone section. The isolation plate has a plurality of slots along a perimeter thereof positionable adjacent an inner surface of the housing for selectively passing portions of the downhole fluid out of the cyclone section. The cyclone separator further having a catching section for receiving the portions of the downhole fluid passing through the isolation plate for gravitational separation into a plurality of phases therein. The catching section has a plurality of baffles for stopping rotation of the portions of the downhole fluid.
摘要:
A system and method for sampling fluid from a production wellsite are provided. The system includes an interface operatively connectable to the port and a separation circuit operatively connectable to the interface for establishing fluid communication therebetween. The separation circuit includes a pumping unit and at least one sample chamber. The pumping unit includes pumping chambers having a cylinder with a piston therein defining a fluid cavity and a buffer cavity. The fluid cavities define a separation chamber for receiving the fluid and allowing separation of the fluid therein into phases. The buffer cavities have a buffer fluid selectively movable therebetween whereby the fluid flows through the separation circuit at a controlled rate. The sample chamber is for collecting at least one sample of the phases of the fluid.
摘要:
A method of tracking production from an NG source that includes the steps of providing one or more micro-scale GTL units, feeding NG from the source to the micro-scale GTL units, operating the micro-scale GTL units and adjusting the number of micro-scale GTL units employed to track or match the production from the source is provided. In some aspects of the invention, the micro-scale GTL unit includes both syngas manufacture and liquid product synthesis. The liquid product synthesis step may produce methanol, mixed higher carbon number alcohols, dimethyl ether, Fischer-Tropsch liquids, and/or any combination of these products.
摘要:
A system and method for sampling fluid from a production wellsite are provided. The system includes an interface operatively connectable to the port and a separation circuit operatively connectable to the interface for establishing fluid communication therebetween. The separation circuit includes a pumping unit and at least one sample chamber. The pumping unit includes pumping chambers having a cylinder with a piston therein defining a fluid cavity and a buffer cavity. The fluid cavities define a separation chamber for receiving the fluid and allowing separation of the fluid therein into phases. The buffer cavities have a buffer fluid selectively movable therebetween whereby the fluid flows through the separation circuit at a controlled rate. The sample chamber is for collecting at least one sample of the phases of the fluid.
摘要:
A method of tracking production from an NG source that includes the steps of providing one or more micro-scale GTL units, feeding NG from the source to the micro-scale GTL units, operating the micro-scale GTL units and adjusting the number of micro-scale GTL units employed to track or match the production from the source is provided. In some aspects of the invention, the micro-scale GTL unit includes both syngas manufacture and liquid product synthesis. The liquid product synthesis step may produce methanol, mixed higher carbon number alcohols, dimethyl ether, Fischer-Tropsch liquids, and/or any combination of these products.
摘要:
A method and apparatus detects dew precipitation and determines dew precipitation onset pressure in a sample of formation fluid located downhole in an oilfield reservoir. In a preferred embodiment, the method includes (a) isolating a sample of formation fluid downhole; (b) illuminating the sample downhole with fluorescence excitation light; (c) measuring at least one characteristic of fluorescence short from the sample; (d) reducing pressure on the sample; (e) repeating steps (b) to (d); (f) detecting dew precipitation when a change is detected in a parameter that is a function of the at least one characteristic of fluorescence emission; and (g) setting dew precipitation onset pressure equal to pressure on the sample when the change in the parameter is detected. The parameter preferably is a function of fluorescence intensity and fluorescence red shift, and the change is an increase in fluorescence intensity and detection of fluorescence red shift. Also, the function includes a ratio of a measured intensity at a first wavelength to a reference intensity, and the reference intensity is a function of a measured intensity at a second wavelength.