摘要:
A method for generating syngas having a H2:CO ratio of less than 2:1 including selecting a predetermined desired syngas H2:CO molar ratio, selecting a hydrocarbon with a natural H2:CO molar ratio less than the desired ratio, selecting a hydrocarbon with a natural H2:CO molar ratio greater than the desired ratio, mixing the two hydrocarbons such that the natural H2:CO molar ratio of the mixture is the desired ratio, and catalytically partially oxidizing the mixture to produce syngas with the desired ratio.
摘要:
Claus sulfur recovery plants that include one or more single-stage or multi-stage compact tubular Claus catalytic reactor-heat exchanger units are disclosed. In some instances, these new or improved Claus plants additionally include one or more compact heat exchanger containing cooling tubes that are filled with a heat transfer enhancement medium. The new compact tubular Claus catalytic reactor-heat exchanger units and HTEM-containing heat exchangers are also disclosed. A process for recovering sulfur from a hydrogen sulfide-containing gas stream, employing the new tubular Claus catalytic reactor-heat exchanger unit, and in some instances a HTEM-containing heat exchanger, are also disclosed.
摘要:
A compact sulfur recovery system is disclosed which comprises a primary structure including a catalytic partial oxidation reaction zone, a first temperature-control zone, a first Claus catalytic reaction zone, a second temperature-control zone, a first liquid sulfur outlet, and a first effluent gas outlet. In some embodiments, a secondary structure follows the primary structure and comprises a second Claus catalytic reaction zone, a third temperature-control zone, a second liquid sulfur outlet, and a second effluent gas outlet. One or more components of the system employ heat transfer enhancement material in the temperature-control zones, and one or more components deter accumulation of liquid sulfur in the Claus catalytic reaction zones. A process for recovering elemental sulfur from hydrogen sulfide-containing gas streams comprises regulating the temperature of certain components to favor the partial oxidation reaction, and the Claus reaction, as appropriate, and deters pooling of liquid sulfur on the Claus catalyst(s).
摘要:
Claus sulfur recovery plants that include one or more single-stage or multi-stage compact tubular Claus catalytic reactor-heat exchanger units are disclosed. In some instances, these new or improved Claus plants additionally include one or more compact heat exchanger containing cooling tubes that are filled with a heat transfer enhancement medium. The new compact tubular Claus catalytic reactor-heat exchanger units and HTEM-containing heat exchangers are also disclosed. A process for recovering sulfur from a hydrogen sulfide-containing gas stream, employing the new tubular Claus catalytic reactor-heat exchanger unit, and in some instances a HTEM-containing heat exchanger, are also disclosed.
摘要:
A process and catalyst are disclosed for reducing coking in hydrocarbon processing reactions. The preferred embodiments employ a sulfur-containing material such as hydrogen sulfide to reduce catalyst susceptibility to deactivation from carbon deposits formed during processing.
摘要:
A compact sulfur recovery system is disclosed which includes an upflow orientation for the gases through a primary structure including a catalytic partial oxidation reaction zone, a first temperature-control zone, a first Claus catalytic reaction zone, a second temperature-control zone, a first liquid sulfur outlet, and a first effluent gas outlet. The upward flow of the gases puts the hottest gases in contact with the tubes and tube sheet in the waste heat boiler where there is greater confidence in having liquid water in most continuous therewith.
摘要:
A process for removing sulfur from a H2S-containing gas stream is disclosed. A preferred embodiment of the process comprises incorporating a short contact time catalytic partial oxidation reactor, a cooling zone, and a condenser into a conventional refinery or gas plant process, such as a natural gas desulfurizer, a hydrotreater, coker or fluid catalytic cracker, in which sulfur removal is needed in order to produce a more desirable product. An H2S-containing gas stream is fed into a short contact time reactor where the H2S is partially oxidized over a suitable catalyst in the presence of O2 to elemental sulfur and water.
摘要翻译:公开了一种从含H2S的气流中除去硫的方法。 该方法的优选实施方案包括将短接触时间催化部分氧化反应器,冷却区和冷凝器并入常规炼油厂或天然气工厂过程中,例如天然气脱硫器,加氢处理器,焦化器或流化催化裂化器, 为了生产更理想的产品,需要除硫。 将含H2S的气流进料到短接触时间反应器中,其中H 2 S 2在O 2存在下在合适的催化剂上部分氧化, 2元素硫和水。
摘要:
An apparatus and process for recovering elemental sulfur from a H2S-containing waste gas stream are disclosed, along with a method of making a preferred catalyst for catalyzing the process. The apparatus preferably comprises a short contact time catalytic partial oxidation reactor, a cooling zone, and a sulfur condenser. According to a preferred embodiment of the process, a mixture of H2S and O2 contacts the catalyst very briefly (i.e, less than about 200 milliseconds). Some preferred catalyst devices comprise a reduced metal such as Pt, Rh, or Pt—Rh, and a lanthanide metal oxide, or a pre-carbided form of the metal. The preferred apparatus and process are capable of operating at superatmospheric pressure and improve the efficiency of converting H2S to sulfur, which will reduce the cost and complexity of construction and operation of a sulfur recovery plant used for waste gas cleanup.
摘要:
A method, system and catalysts for improving the yield of syngas from the catalytic partial oxidation of methane or other light hydrocarbons is disclosed. The increase in yield and selectivity for CO and H2 products results at least in part from the substitution of H2S partial oxidation to elemental sulfur and water for the combustion of light hydrocarbon to CO2 and water.
摘要:
A method and apparatus for converting a hydrocarbon and oxygen containing gas feed stream to a product stream, such as syngas, including catalytically partially oxidizing the hydrocarbon feed stream over a catalyst bed. The catalyst bed has a downstream zone which is less resistant to flow than the upstream zone.