摘要:
A gate dielectric structure (201) fabrication process includes forming a transitional dielectric film (205) overlying a silicon oxide film (204). A high dielectric constant film (206) is then formed overlying an upper surface of the transitional dielectric film (205). The composition of the transitional dielectric film (205) at the silicon oxide film (204) interface primarily comprises silicon and oxygen. The high K dielectric (206) and the composition of the transitional dielectric film (205) near the upper surface primarily comprise a metal element and oxygen. Forming the transitional dielectric film (205) may include forming a plurality of transitional dielectric layers (207) where the composition of each successive transitional dielectric layer (207) has a higher concentration of the metal element and a lower concentration of silicon. Forming the transitional dielectric layer (205) may include performing multiple cycles of an atomic layer deposition process (500) where a precursor concentration for each cycle differs from the precursor concentration of the preceding cycle.
摘要:
A semiconductor fabrication process includes forming a transistor gate overlying an SOI wafer having a semiconductor top layer over a buried oxide layer (BOX) over a semiconductor substrate. Source/drain trenches, disposed on either side of the gate, are etched into the BOX layer. Source/drain structures are formed within the trenches. A depth of the source/drain structures is greater than the thickness of the top silicon layer and an upper surface of the source/drain structures coincides approximately with the transistor channel whereby vertical overlap between the source/drain structures and the gate is negligible. The trenches preferably extend through the BOX layer to expose a portion of the silicon substrate. The source/drain structures are preferably formed epitaxially and possibly in two stages including an oxygen rich stage and an oxygen free stage. A thermally anneal between the two epitaxial stages will form an isolation dielectric between the source/drain structure and the substrate.
摘要:
Using plating, metal gates for N channel and P channel transistors are formed of different materials to achieve the appropriate work function for these N and P channel transistors. The plating is achieved with a seed layer consistent with the growth of the desired layer. The preferred materials are selected from the platinum metals, which comprise ruthenium, ruthenium oxide, iridium, palladium, platinum, nickel, osmium, and cobalt. These are attractive metals because they are relatively high conductivity, can be plated, and provide a good choice of work functions for forming P and N channel transistors.
摘要:
A semiconductor fabrication process for forming a gate dielectric includes depositing a high-k dielectric stack including incorporating nitrogen into the high-k dielectric stack in-situ. A top high-k dielectric is formed overlying the dielectric stack and the dielectric stack and the top dielectric are annealed. Depositing the dielectric stack includes depositing a plurality of high-k dielectric layers where each layer is formed in a distinct processing step or set of steps. Depositing one of the dielectric layers includes performing a plurality of atomic layer deposition processes to form a plurality of high-k sublayers, wherein each sublayer is a monolayer film. Depositing the plurality of sublayers includes depositing a nitrogen free sublayer and depositing a nitrogen bearing sublayer. Depositing the nitrogen free sublayer includes pulsing an ALD chamber with HfCl4, purging the chamber with an inert, pulsing the chamber with an H2O or D2O, and purging the chamber with an inert.
摘要:
A semiconductor device has a P channel gate stack comprising a first metal type and a second metal type over the first metal type and an N channel gate stack comprising the second metal type in direct contact with a gate dielectric/etch stop layer stack. The N channel gate stack and the P channel gate stack are etched by a dry etch. Either the gate dielectric or etch stop can be in contact with the substrate. The etch stop layer prevents the dry etch of the first and second metal layers from etching through the gate dielectric and gouging the underlying substrate.
摘要:
A gate dielectric is treated with a nitridation step and an anneal. After this, an additional nitridation step and anneal is performed. The second nitridation and anneal results in an improvement in the relationship between gate leakage current density and current drive of the transistors that are ultimately formed.
摘要:
A method for forming a dielectric is disclosed. The method comprises forming a first dielectric layer over semiconductor material. A diffusion barrier material is introduced into the first dielectric layer. Lastly, a second dielectric layer is formed over the first dielectric layer after the introducing.
摘要:
A method for forming at least a portion of a semiconductor device includes providing a semiconductor substrate, flowing a first precursor gas over the substrate to form a first metal-containing layer overlying the semiconductor substrate, and after completing said step of flowing the first precursor gas, flowing a first deuterium-containing purging gas over the first metal-containing layer to incorporate deuterium into the first metal-containing layer and to also purge the first precursor gas. The method may further include flowing a second precursor gas over the first metal-containing layer to react with the first metal-containing layer to form a metal compound-containing layer, and flowing a second deuterium-containing purging gas over the metal compound-containing layer to incorporate deuterium into the metal compound-containing layer and to also purge the second precursor gas.
摘要:
A wafer having an SOI configuration and active regions having different surface orientations for different channel type transistors. In one example, semiconductor structures having a first surface orientation are formed on a donor wafer. Semiconductor structures having a second surface orientation are formed on a second wafer. Receptor openings are formed on the second wafer. The semiconductor structures having the first surface orientation are located in the receptor openings and transferred to the second wafer. The resultant wafer has semiconductor regions having a first surface orientation for a first channel type of transistor and semiconductor regions having a second surface orientation for a second channel type transistor.
摘要:
A semiconductor fabrication process includes patterning a first gate electrode layer overlying a gate dielectric. A second gate electrode layer is formed overlying the first gate electrode layer and the gate dielectric. Portions of the second gate electrode layer overlying the first gate electrode layer are removed until the first and second gate electrode layers have the same thickness. A third gate electrode layer may be formed overlying the first and second gate electrode layers. The first gate electrode layer may comprise TiN and reside primarily overlying PMOS regions while the second gate electrode layer may comprise TaC or TaSiN and primarily overlie NMOS regions. Removing portions of the second gate electrode layer may include performing a chemical mechanical process (CMP) without masking the second gate electrode layer or forming a resist mask and etching exposed portions of the second gate electrode layer.